A Public Resource Compiled by the

Brazil: Gene Drives

Lightly Regulated

Gene edited gene drives are not banned, but it is unclear how they will be regulated.

Worldwide, gene drive regulations are in flux. Gene drives are being developed using transgenic technology (GMOs) that contain foreign genes, as well as gene editing, including CRISPR (synthetic gene drives), which do not, complicating regulatory oversight as gene editing and GMOs are often regulated differently.

Gene drives developed through gene editing are not banned, but it is unclear how they will be regulated. Genetically modified organisms (GMOs) are governed by the National Technical Commission for Biosafety (CTNBio)  through Law No. 11,105 of March 24, 2005 which sets safety standards for GMOs. In 2018, CTNBio released a resolution that included gene drives as possible products developed using new breeding techniques (NBTs). The resolution clarified that new breeding techniques that do not introduce foreign genes would not be considered GMOs and did not ban gene drives from being developed. The resolution did not specify how gene drives developed using NBTs would be regulated.

Products/Research

None

Regulatory Timeline

2018: National Technical Biosafety Commission (CTNBio) releases Normative Resolution No. 16, focusing on NBTs. It clarifies that many products derived from genetic engineering do not meet the definition of a GMO as defined by the 2005 regulation and determines that NBTs should be regulated on a case-by-case basis.

2015: The British biotechnology firm Oxitec releases genetically modified mosquitoes that contain a gene that causes them to have nonviable offspring, to help reduce the spread of the Zika virus.

2005: Brazil establishes CTNBio under Law No. 11.105 to set rules for laboratories and establish authorization procedures for GMO research, the production and marketing of GMOs, restrictions on their release into the environment, regimes for their cultivation, requirements for reporting their release, inspections and monitoring of GMO research activities and their commercial release, implementing authorities and authorizing procedures for their release and restrictions on GMOs in foods. It provides for the punishment of administrative violations and criminal offenses. CTNBio has approved the commercial use of approximately fifty GMOs.

1995: Brazil passes Law No. 8.974, which establishes safety and inspection requirements for genetic engineering in agriculture and humans. The aim is to protect human, animal and plant health as well as the environment. It establishes which manipulation methods would be prohibited.

NGO Reaction

Gene drives face fierce opposition from certain environmental advocacy groups, which claim that modified creatures might spread across borders and adversely impact the environment in unseen ways—claims most scientists say are overblown. The Canadian-based, international organization ETC Group and more than 200 global anti-GMO activists and NGOs published an open letter in 2016 opposing gene drives and called for a global moratorium. During the 2016 World Conservation Congress, a select group of NGOs, environmental activists and some scientists voted to adopt a moratorium on supporting research into gene drives. The moratorium call was rejected at the 2016 United Nations Convention on Biodiversity (CBD). In 2018, groups such as the National Coalition of Farmworkers and Rural, Water and Forest Peoples and the National Coordination of the Movement of Landless Rural Workers (MST) protested the 2018 resolution allowing the release of gene drives into the environment. Counter NGO groups, including Target Malaria, Island Conservation and Genetic Biocontrol of Invasive Rodents Program, have adopted the opposite position, stating that “gene drive is vital to the future of restoration and critical in preventing extinctions”.

Additional Resources

 

Click on a country (eg. Brazil, US) or region (eg. European Union) below to find which gene drive products and processes are approved or in development and their regulatory status.

Globe Map

European Union

European Union

Brazil

Brazil

New Zealand

New Zealand

United States

United States

Australia

Australia

Canada

Canada

China

China

United Kingdom

United Kingdom

Israel

Israel

Argentina

Argentina

Japan

Japan

Mexico

Mexico

Russia

Russia

Chile

Chile

Uruguay

Uruguay

Paraguay

Paraguay

India

India

Africa

Africa

Ukraine

Ukraine

Southeast Asia

Southeast Asia

Central America

Central America

Colombia

Colombia

Norway

Norway

Ecuador

Ecuador

Gene Drive Index
Compare Regulatory Restrictions Country-to-Country

Gene editing regulations worldwide are evolving. The Gene Editing Index ratings below represent the current status of gene editing regulations and will be updated as new regulations are passed.

Colors and ratings guide
 

Regulation Status Rating
Determined: No Unique Regulations* 10
Lightly Regulated 8
Proposed: No Unique Regulations† 6
Ongoing Research, Regulations In Development 5
Highly Regulated 4
Mostly Prohibited 2
Limited Research, No Clear Regulations 1
Prohibited 0
Lightly Regulated: Gene drives regulated through existing biotechnology laws.
*Determined: No Unique Regulations: Gene and stem cell therapies regulated as phamaceuticals with no additional restrictions.

†Proposed: No Unique Regulations: Decrees under consideration for gene and stem cell therapies that would not require unique regulations beyond current restrictions on pharmaceuticals.

Gene Drives:
Genetic engineering technology used to transmit a characteristic throughout a wild population. For example, it can be used to develop mosquitoes that only have female offspring. If released into the wild, these mosquitoes would breed with wild malaria-carrying mosquitoes and over time would eliminate the population. Scientists are interested in using this technology to help eradicate disease-carrying insects and control invasive species, but questions about how gene drives will be directed and controlled are still being fleshed out.

Rating by Country / Region
Click each column header and arrow to sort the countries / regions

Swipe right/left if all columns aren't visible

Country / Region Gene Drives Gene Drive Rating
Japan 1 1
Brazil 8 8
Canada 8 8
Russia 1 1
Argentina 1 1
Israel 1 1
Australia 4 4
China 1 1
US 4 4
Chile 1 1
New Zealand 4 4
Ukraine 1 1
Central America 1 1
Paraguay 1 1
Uruguay 1 1
India 1 1
UK 2 2
Mexico 1 1
EU 2 2
Share via

Gene editing is a set of techniques that can be used to precisely modify the DNA of almost any organism. It is being used for applications in human health, gene drives and agriculture. There are numerous gene-editing tools besides CRISPR-Cas 9, which gets most of the attention because it is a comparatively easy tool to use.

Gene editing does not usually involve transgenics – moving ‘foreign’ genes between species. It also refers to a specific technique in contrast to the general term GMO, which is scientifically ambiguous, as genetic modification is a process not a product. Most gene editing involves creating new products by deleting very small segments of DNA (sometimes in agriculture called Site-Directed Nuclease 1 or SDN-1 techniques), which can silence a gene or change a gene’s activity. Countries are evaluating whether or not to regulate this type of gene editing, since it is so similar to natural mutations. The GLP’s Gene Editing Index ratings reflect the regulatory status of SDN-1 techniques, which are the most liberally regulated and will generate most products in the near term.

To develop different products, gene editing can change larger segments of DNA or add DNA from other species (a form of transgenics sometimes in agriculture called SDN-2 or SDN-3 techniques). While many countries are not regulating or lightly regulating SDN-1 techniques, most are moving toward tightly regulating or even restricting SDN-2 and SDN-3.

For more background on the various gene editing SDN techniques, read background articles here and here.

Send this to a friend