An improved zinc-finger nuclease architecture for highly specific genome editing

Abstract

Genome editing driven by zinc-finger nucleases (ZFNs) yields high gene-modification efficiencies (>10%) by introducing a recombinogenic double-strand break into the targeted gene. The cleavage event is induced using two custom-designed ZFNs that heterodimerize upon binding DNA to form a catalytically active nuclease complex. Using the current ZFN architecture, however, cleavage-competent homodimers may also form that can limit safety or efficacy via off-target cleavage. Here we develop an improved ZFN architecture that eliminates this problem. Using structure-based design, we engineer two variant ZFNs that efficiently cleave DNA only when paired as a heterodimer. These ZFNs modify a native endogenous locus as efficiently as the parental architecture, but with a >40-fold reduction in homodimer function and much lower levels of genome-wide cleavage. This architecture provides a general means for improving the specificity of ZFNs as gene modification reagents.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: DNA recognition and cleavage by zinc-finger nucleases (ZFNs).
Figure 2: Development of FokI cleavage domain mutants that function as obligate heterodimers.
Figure 3: Gene editing activity of FokI cleavage domain variants at a native endogenous target.
Figure 4: Preferential heterodimer activity of FokI variants as demonstrated by DNA cleavage in vitro. (a) DNA target fragments.
Figure 5: Reduced DNA damage levels by heterodimer variants.
Figure 6: Heterodimer variants yield reduced DNA damage levels while retaining full activity for targeted gene modification.

References

  1. 1

    Kim, Y.G., Cha, J. & Chandrasegaran, S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. USA 93, 1156–1160 (1996).

    CAS  Article  Google Scholar 

  2. 2

    Smith, J., Berg, J.M. & Chandrasegaran, S. A detailed study of the substrate specificity of a chimeric restriction enzyme. Nucleic Acids Res. 27, 674–681 (1999).

    CAS  Article  Google Scholar 

  3. 3

    Porteus, M.H. & Baltimore, D. Chimeric nucleases stimulate gene targeting in human cells. Science 300, 763 (2003).

    Article  Google Scholar 

  4. 4

    Bibikova, M., Beumer, K., Trautman, J.K. & Carroll, D. Enhancing gene targeting with designed zinc finger nucleases. Science 300, 764 (2003).

    CAS  Article  Google Scholar 

  5. 5

    Urnov, F.D. et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435, 646–651 (2005).

    CAS  Article  Google Scholar 

  6. 6

    Beumer, K., Bhattacharyya, G., Bibikova, M., Trautman, J.K. & Carroll, D. Efficient gene targeting in Drosophila with zinc-finger nucleases. Genetics 172, 2391–2403 (2006).

    CAS  Article  Google Scholar 

  7. 7

    Moehle, E.A. et al. Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc. Natl. Acad. Sci. USA 104, 3055–3060 (2007).

    CAS  Article  Google Scholar 

  8. 8

    Liang, F., Han, M., Romanienko, P.J. & Jasin, M. Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc. Natl. Acad. Sci. USA 95, 5172–5177 (1998).

    CAS  Article  Google Scholar 

  9. 9

    Elrod-Erickson, M., Benson, T.E. & Pabo, C.O. High-resolution structures of variant Zif268-DNA complexes: implications for understanding zinc finger-DNA recognition. Structure 6, 451–464 (1998).

    CAS  Article  Google Scholar 

  10. 10

    Elrod-Erickson, M., Rould, M.A., Nekludova, L. & Pabo, C.O. Zif268 protein-DNA complex refined at 1.6 A: a model system for understanding zinc finger-DNA interactions. Structure 4, 1171–1180 (1996).

    CAS  Article  Google Scholar 

  11. 11

    Miller, J.C. & Pabo, C.O. Rearrangement of side-chains in a Zif268 mutant highlights the complexities of zinc finger-DNA recognition. J. Mol. Biol. 313, 309–315 (2001).

    CAS  Article  Google Scholar 

  12. 12

    Greisman, H.A. & Pabo, C.O. A general strategy for selecting high-affinity zinc finger proteins for diverse DNA target sites. Science 275, 657–661 (1997).

    CAS  Article  Google Scholar 

  13. 13

    Segal, D.J., Dreier, B., Beerli, R.R. & Barbas, C.F., III. Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5′-GNN-3′ DNA target sequences. Proc. Natl. Acad. Sci. USA 96, 2758–2763 (1999).

    CAS  Article  Google Scholar 

  14. 14

    Hurt, J.A., Thibodeau, S.A., Hirsh, A.S., Pabo, C.O. & Joung, J.K. Highly specific zinc finger proteins obtained by directed domain shuffling and cell-based selection. Proc. Natl. Acad. Sci. USA 100, 12271–12276 (2003).

    CAS  Article  Google Scholar 

  15. 15

    Pabo, C.O., Peisach, E. & Grant, R.A. Design and selection of novel Cys2His2 zinc finger proteins. Annu. Rev. Biochem. 70, 313–340 (2001).

    CAS  Article  Google Scholar 

  16. 16

    Isalan, M., Klug, A. & Choo, Y. A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-1 promoter. Nat. Biotechnol. 19, 656–660 (2001).

    CAS  Article  Google Scholar 

  17. 17

    Hoeijmakers, J.H. Genome maintenance mechanisms for preventing cancer. Nature 411, 366–374 (2001).

    CAS  Article  Google Scholar 

  18. 18

    Lloyd, A., Plaisier, C.L., Carroll, D. & Drews, G.N. Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc. Natl. Acad. Sci. USA 102, 2232–2237 (2005).

    CAS  Article  Google Scholar 

  19. 19

    Wright, D.A. et al. High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J. 44, 693–705 (2005).

    CAS  Article  Google Scholar 

  20. 20

    Bibikova, M., Golic, M., Golic, K.G. & Carroll, D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161, 1169–1175 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Morton, J., Davis, M.W., Jorgensen, E.M. & Carroll, D. Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells. Proc. Natl. Acad. Sci. USA 103, 16370–16375 (2006).

    CAS  Article  Google Scholar 

  22. 22

    Bitinaite, J., Wah, D.A., Aggarwal, A.K. & Schildkraut, I. FokI dimerization is required for DNA cleavage. Proc. Natl. Acad. Sci. USA 95, 10570–10575 (1998).

    CAS  Article  Google Scholar 

  23. 23

    Vanamee, E.S., Santagata, S. & Aggarwal, A.K. FokI requires two specific DNA sites for cleavage. J. Mol. Biol. 309, 69–78 (2001).

    CAS  Article  Google Scholar 

  24. 24

    Smith, J. et al. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res. 28, 3361–3369 (2000).

    CAS  Article  Google Scholar 

  25. 25

    Mani, M., Smith, J., Kandavelou, K., Berg, J.M. & Chandrasegaran, S. Binding of two zinc finger nuclease monomers to two specific sites is required for effective double-strand DNA cleavage. Biochem. Biophys. Res. Commun. 334, 1191–1197 (2005).

    CAS  Article  Google Scholar 

  26. 26

    Kaczorowski, T., Skowron, P. & Podhajska, A.J. Purification and characterization of the FokI restriction endonuclease. Gene 80, 209–216 (1989).

    CAS  Article  Google Scholar 

  27. 27

    Richardson, C., Elliott, B. & Jasin, M. Chromosomal double-strand breaks introduced in mammalian cells by expression of I-Sce I endonuclease. Methods Mol. Biol. 113, 453–463 (1999).

    CAS  PubMed  Google Scholar 

  28. 28

    Tan, S. et al. Zinc-finger protein-targeted gene regulation: genomewide single-gene specificity. Proc. Natl. Acad. Sci. USA 100, 11997–12002 (2003).

    CAS  Article  Google Scholar 

  29. 29

    Bartsevich, V.V., Miller, J.C., Case, C.C. & Pabo, C.O. Engineered zinc finger proteins for controlling stem cell fate. Stem Cells 21, 632–637 (2003).

    CAS  Article  Google Scholar 

  30. 30

    Beerli, R.R., Dreier, B. & Barbas, C.F. 3rd Positive and negative regulation of endogenous genes by designed transcription factors. Proc. Natl. Acad. Sci. USA 97, 1495–1500 (2000).

    CAS  Article  Google Scholar 

  31. 31

    Guan, X. et al. Heritable endogenous gene regulation in plants with designed polydactyl zinc finger transcription factors. Proc. Natl. Acad. Sci. USA 99, 13296–13301 (2002).

    CAS  Article  Google Scholar 

  32. 32

    O'Shea, E.K., Lumb, K.J. & Kim, P.S. Peptide 'Velcro': design of a heterodimeric coiled coil. Curr. Biol. 3, 658–667 (1993).

    CAS  Article  Google Scholar 

  33. 33

    Zhu, Z., Presta, L.G., Zapata, G. & Carter, P. Remodeling domain interfaces to enhance heterodimer formation. Protein Sci. 6, 781–788 (1997).

    CAS  Article  Google Scholar 

  34. 34

    Atwell, S., Ridgway, J.B., Wells, J.A. & Carter, P. Stable heterodimers from remodeling the domain interface of a homodimer using a phage display library. J. Mol. Biol. 270, 26–35 (1997).

    CAS  Article  Google Scholar 

  35. 35

    Nohaile, M.J., Hendsch, Z.S., Tidor, B. & Sauer, R.T. Altering dimerization specificity by changes in surface electrostatics. Proc. Natl. Acad. Sci. USA 98, 3109–3114 (2001).

    CAS  Article  Google Scholar 

  36. 36

    Havranek, J.J. & Harbury, P.B. Automated design of specificity in molecular recognition. Nat. Struct. Biol. 10, 45–52 (2003).

    CAS  Article  Google Scholar 

  37. 37

    Bolon, D.N., Grant, R.A., Baker, T.A. & Sauer, R.T. Specificity versus stability in computational protein design. Proc. Natl. Acad. Sci. USA 102, 12724–12729 (2005).

    CAS  Article  Google Scholar 

  38. 38

    Wah, D.A., Bitinaite, J., Schildkraut, I. & Aggarwal, A.K. Structure of FokI has implications for DNA cleavage. Proc. Natl. Acad. Sci. USA 95, 10564–10569 (1998).

    CAS  Article  Google Scholar 

  39. 39

    Joachimiak, L.A., Kortemme, T., Stoddard, B.L. & Baker, D. Computational design of a new hydrogen bond network and at least a 300-fold specificity switch at a protein-protein interface. J. Mol. Biol. 361, 195–208 (2006).

    CAS  Article  Google Scholar 

  40. 40

    Schultz, L.B., Chehab, N.H., Malikzay, A. & Halazonetis, T.D. p53 binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. J. Cell Biol. 151, 1381–1390 (2000).

    CAS  Article  Google Scholar 

  41. 41

    Anderson, L., Henderson, C. & Adachi, Y. Phosphorylation and rapid relocalization of 53BP1 to nuclear foci upon DNA damage. Mol. Cell. Biol. 21, 1719–1729 (2001).

    CAS  Article  Google Scholar 

  42. 42

    Rappold, I., Iwabuchi, K., Date, T. & Chen, J. Tumor suppressor p53 binding protein 1 (53BP1) is involved in DNA damage-signaling pathways. J. Cell Biol. 153, 613–620 (2001).

    CAS  Article  Google Scholar 

  43. 43

    Rogakou, E.P., Pilch, D.R., Orr, A.H., Ivanova, V.S. & Bonner, W.M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273, 5858–5868 (1998).

    CAS  Article  Google Scholar 

  44. 44

    Rogakou, E.P., Boon, C., Redon, C. & Bonner, W.M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 146, 905–916 (1999).

    CAS  Article  Google Scholar 

  45. 45

    Stiff, T. et al. ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res. 64, 2390–2396 (2004).

    CAS  Article  Google Scholar 

  46. 46

    Jeggo, P.A. DNA breakage and repair. Adv. Genet. 38, 185–218 (1998).

    CAS  Article  Google Scholar 

  47. 47

    Ashworth, J. et al. Computational redesign of endonuclease DNA binding and cleavage specificity. Nature 441, 656–659 (2006).

    CAS  Article  Google Scholar 

  48. 48

    Sussman, D. et al. Isolation and characterization of new homing endonuclease specificities at individual target site positions. J. Mol. Biol. 342, 31–41 (2004).

    CAS  Article  Google Scholar 

  49. 49

    Arnould, S. et al. Engineering of large numbers of highly specific homing endonucleases that induce recombination on novel DNA targets. J. Mol. Biol. 355, 443–458 (2006).

    CAS  Article  Google Scholar 

  50. 50

    Chames, P. et al. In vivo selection of engineered homing endonucleases using double-strand break induced homologous recombination. Nucleic Acids Res. 33, e178 (2005).

    Article  Google Scholar 

  51. 51

    Epinat, J.C. et al. A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Res. 31, 2952–2962 (2003).

    CAS  Article  Google Scholar 

  52. 52

    Humphrey, W., Dalke, A. & Schulten, K. VMD - Visual Molecular Dynamics. J. Mol. Graph. 14, 33–38 (1996).

    CAS  Article  Google Scholar 

  53. 53

    Guex, N. & Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723 (1997).

    CAS  Article  Google Scholar 

  54. 54

    Viadiu, H. & Aggarwal, A.K. The role of metals in catalysis by the restriction endonuclease BamHI. Nat. Struct. Biol. 5, 910–916 (1998).

    CAS  Article  Google Scholar 

  55. 55

    Szymczak, A.L. et al. Correction of multi-gene deficiency in vivo using a single 'self-cleaving' 2A peptide-based retroviral vector. Nat. Biotechnol. 22, 589–594 (2004).

    CAS  Article  Google Scholar 

  56. 56

    Qiu, P. et al. Mutation detection using Surveyor nuclease. Biotechniques 36, 702–707 (2004).

    CAS  Article  Google Scholar 

  57. 57

    Kortemme, T. et al. Computational redesign of protein-protein interaction specificity. Nat. Struct. Mol. Biol. 11, 371–379 (2004).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Judy Campisi for support and helpful discussions, Yann Jouvenot, Sheldon Augustus, Danny Xia and Lei Zhang for assistance with protocols and constructs, Dana Carroll for comments on the manuscript, Fyodor Urnov for helpful discussions and Edward Lanphier for encouragement and support. This research was supported in part by grant no. 7ONANB4H3006 from the Advanced Technology Program (US Department of Energy).

Author information

Affiliations

Authors

Contributions

J.C.M and C.O.P. conceived the project; J.C.M., M.C.H., P.D.G., C.O.P. and E.J.R. designed experiments; J.C.M., M.C.H., J.W., D.Y.G., Y.-L.L., I.R., C.M.B., A.J.W., N.S.W and K.A.K. performed the experiments; J.C.M., M.C.H., P.D.G., C.O.P. and E.J.R. wrote the manuscript.

Corresponding author

Correspondence to Edward J Rebar.

Ethics declarations

Competing interests

Authors of this work are current or former employees of Sangamo BioSciences, Inc. (C.O.P. was CSO from 2001–2003; he retains a role as chair of the scientific advisory board.)

Supplementary information

Supplementary Fig. 1

In vitro DNA cleavage assay with all four combinations of the “plus” and “minus” cleavage domain variants. (DOC 34 kb)

Supplementary Fig. 2

Sequences of nuclease constructs. (DOC 28 kb)

Supplementary Table 1

Activity data for key constructs tested during our iterative development process. (DOC 94 kb)

Supplementary Methods (DOC 33 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Miller, J., Holmes, M., Wang, J. et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25, 778–785 (2007). https://doi.org/10.1038/nbt1319

Download citation

Further reading