The control of DNA repair by the cell cycle

Abstract

The correct duplication and transmission of genetic material to daughter cells is the primary objective of the cell division cycle. DNA replication and chromosome segregation present both challenges and opportunities for DNA repair pathways that safeguard genetic information. As a consequence, there is a profound, two-way connection between DNA repair and cell cycle control. Here, we review how DNA repair processes, and DNA double-strand break repair in particular, are regulated during the cell cycle to optimize genomic integrity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Repair of double-strand breaks in G1 and early S phase.
Figure 2: Repair of double-strand breaks in late S phase.
Figure 3: Repair of double-strand breaks in mitosis.
Figure 4: Models for cell-cycle-dependent activation of repair by homologous recombination.

References

  1. 1

    Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2

    Murray, A. W. & Hunt, T. The Cell Cycle: An Introduction (Freeman, 1993).

    Google Scholar 

  3. 3

    Sfeir, A. & Symington, L. S. Microhomology-mediated end joining: a back-up survival mechanism or dedicated pathway? Trends Biochem. Sci. 40, 701–714 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4

    Lieber, M. R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79, 181–211 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5

    Betermier, M., Bertrand, P. & Lopez, B. S. Is non-homologous end-joining really an inherently error-prone process? PLoS Genet. 10, e1004086 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  6. 6

    Wyatt, D. W. et al. Essential roles for polymerase theta-mediated end joining in the repair of chromosome breaks. Mol. Cell 63, 662–673 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7

    Mateos-Gomez, P. A. et al. Mammalian polymerase theta promotes alternative NHEJ and suppresses recombination. Nature 518, 254–257 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8

    Ceccaldi, R. et al. Homologous-recombination-deficient tumours are dependent on Polθ-mediated repair. Nature 518, 258–262 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9

    Verma, P. & Greenberg, R. A. Noncanonical views of homology-directed DNA repair. Genes Dev. 30, 1138–1154 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10

    Essers, J. et al. Analysis of mouse Rad54 expression and its implications for homologous recombination. DNA Repair 1, 779–793 (2002).

    CAS  PubMed  Article  Google Scholar 

  11. 11

    Symington, L. S. & Gautier, J. Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 45, 247–271 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12

    Sartori, A. A. et al. Human CtIP promotes DNA end resection. Nature 450, 509–514 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13

    Cannavo, E. & Cejka, P. Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks. Nature 514, 122–125 (2014).

    CAS  PubMed  Article  Google Scholar 

  14. 14

    Garcia, V., Phelps, S. E., Gray, S. & Neale, M. J. Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1. Nature 479, 241–244 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15

    Shibata, A. et al. DNA double-strand break repair pathway choice is directed by distinct MRE11 nuclease activities. Mol. Cell 53, 7–18 (2014).

    CAS  PubMed  Article  Google Scholar 

  16. 16

    Nimonkar, A. V. et al. BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair. Genes Dev. 25, 350–362 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17

    Park, J. Y., Zhang, F. & Andreassen, P. R. PALB2: the hub of a network of tumor suppressors involved in DNA damage responses. Biochim. Biophys. 1846, 263–275 (2014).

    CAS  Google Scholar 

  18. 18

    Roy, R., Chun, J. & Powell, S. N. BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat. Rev. Cancer 12, 68–78 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  19. 19

    Cejka, P., Plank, J. L., Bachrati, C. Z., Hickson, I. D. & Kowalczykowski, S. C. Rmi1 stimulates decatenation of double Holliday junctions during dissolution by Sgs1-Top3. Nat. Struct. Mol. Biol. 17, 1377–1382 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20

    Wu, L. & Hickson, I. D. The Bloom's syndrome helicase suppresses crossing over during homologous recombination. Nature 426, 870–874 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21

    Ira, G., Malkova, A., Liberi, G., Foiani, M. & Haber, J. E. Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell 115, 401–411 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22

    Ray, J. H. & German, J. Bloom's syndrome and EM9 cells in BrdU-containing medium exhibit similarly elevated frequencies of sister chromatid exchange but dissimilar amounts of cellular proliferation and chromosome disruption. Chromosoma 90, 383–388 (1984).

    CAS  PubMed  Article  Google Scholar 

  23. 23

    Wyatt, H. D., Sarbajna, S., Matos, J. & West, S. C. Coordinated actions of SLX1-SLX4 and MUS81-EME1 for Holliday junction resolution in human cells. Mol. Cell 52, 234–247 (2013).

    CAS  PubMed  Article  Google Scholar 

  24. 24

    Krasner, D. S., Daley, J. M., Sung, P. & Niu, H. Interplay between Ku and replication protein A in the restriction of Exo1-mediated DNA break end resection. J. Biol. Chem. 290, 18806–18816 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25

    Symington, L. S. & Gautier, J. Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 45, 247–271 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26

    Takata, M. et al. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J. 17, 5497–5508 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27

    Siede, W., Friedl, A. A., Dianova, I., Eckardt-Schupp, F. & Friedberg, E. C. The Saccharomyces cerevisiae Ku autoantigen homologue affects radiosensitivity only in the absence of homologous recombination. Genetics 142, 91–102 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Pierce, A. J., Hu, P., Han, M., Ellis, N. & Jasin, M. Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells. Genes Dev. 15, 3237–3242 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29

    Saintigny, Y. et al. Characterization of homologous recombination induced by replication inhibition in mammalian cells. EMBO J. 20, 3861–3870 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30

    Frank-Vaillant, M. & Marcand, S. Transient stability of DNA ends allows nonhomologous end joining to precede homologous recombination. Mol. Cell 10, 1189–1199 (2002).

    CAS  PubMed  Article  Google Scholar 

  31. 31

    Ira, G. et al. DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature 431, 1011–1017 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32

    Aylon, Y., Liefshitz, B. & Kupiec, M. The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle. EMBO J. 23, 4868–4875 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33

    Jazayeri, A. et al. ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat. Cell Biol. 8, 37–45 (2006).

    CAS  PubMed  Article  Google Scholar 

  34. 34

    Huertas, P., Cortes-Ledesma, F., Sartori, A. A., Aguilera, A. & Jackson, S. P. CDK targets Sae2 to control DNA-end resection and homologous recombination. Nature 455, 689–692 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35

    Chen, X. et al. Enrichment of Cdk1-cyclins at DNA double-strand breaks stimulates Fun30 phosphorylation and DNA end resection. Nucleic Acids Res. 44, 2742–2753 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  36. 36

    Ferrari, M. et al. Functional interplay between the 53BP1-ortholog Rad9 and the Mre11 complex regulates resection, end-tethering and repair of a double-strand break. PLoS Genet. 11, e1004928 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  37. 37

    Huertas, P. & Jackson, S. P. Human CtIP mediates cell cycle control of DNA end resection and double strand break repair. J. Biol. Chem. 284, 9558–9565 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38

    Makharashvili, N. & Paull, T. T. CtIP: a DNA damage response protein at the intersection of DNA metabolism. DNA Repair 32, 75–81 (2015).

    CAS  PubMed  Article  Google Scholar 

  39. 39

    Wang, H. et al. The interaction of CtIP and Nbs1 connects CDK and ATM to regulate HR-mediated double-strand break repair. PLoS Genet. 9, e1003277 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40

    Yu, X., Wu, L. C., Bowcock, A. M., Aronheim, A. & Baer, R. The C-terminal (BRCT) domains of BRCA1 interact in vivo with CtIP, a protein implicated in the CtBP pathway of transcriptional repression. J. Biol. Chem. 273, 25388–25392 (1998).

    CAS  PubMed  Article  Google Scholar 

  41. 41

    Yu, X. & Chen, J. DNA damage-induced cell cycle checkpoint control requires CtIP, a phosphorylation-dependent binding partner of BRCA1 C-terminal domains. Mol. Cell Biol. 24, 9478–9486 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42

    Stark, J. M., Pierce, A. J., Oh, J., Pastink, A. & Jasin, M. Genetic steps of mammalian homologous repair with distinct mutagenic consequences. Mol. Cell Biol. 24, 9305–9316 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43

    Schlegel, B. P., Jodelka, F. M. & Nunez, R. BRCA1 promotes induction of ssDNA by ionizing radiation. Cancer Res. 66, 5181–5189 (2006).

    CAS  PubMed  Article  Google Scholar 

  44. 44

    Cruz-Garcia, A., Lopez-Saavedra, A. & Huertas, P. BRCA1 accelerates CtIP-mediated DNA-end resection. Cell Rep. 9, 451–459 (2014).

    CAS  PubMed  Article  Google Scholar 

  45. 45

    Steger, M. et al. Prolyl isomerase PIN1 regulates DNA double-strand break repair by counteracting DNA end resection. Mol. Cell 50, 333–343 (2013).

    CAS  PubMed  Article  Google Scholar 

  46. 46

    Orthwein, A. et al. A mechanism for the suppression of homologous recombination in G1 cells. Nature 528, 422–426 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47

    Barton, O. et al. Polo-like kinase 3 regulates CtIP during DNA double-strand break repair in G1. J. Cell Biol. 206, 877–894 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48

    Tomimatsu, N. et al. Phosphorylation of EXO1 by CDKs 1 and 2 regulates DNA end resection and repair pathway choice. Nat. Commun. 5, 3561 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. 49

    Wohlbold, L. et al. Chemical genetics reveals a specific requirement for Cdk2 activity in the DNA damage response and identifies Nbs1 as a Cdk2 substrate in human cells. PLoS Genet. 8, e1002935 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50

    Falck, J. et al. CDK targeting of NBS1 promotes DNA-end resection, replication restart and homologous recombination. EMBO Rep. 13, 561–568 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51

    Ferretti, L. P., Lafranchi, L. & Sartori, A. A. Controlling DNA-end resection: a new task for CDKs. Front. Genet. 4, 99 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  52. 52

    Chen, X. et al. Cell cycle regulation of DNA double-strand break end resection by Cdk1-dependent Dna2 phosphorylation. Nat. Struct. Mol. Biol. 18, 1015–1019 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  53. 53

    Tkac, J. et al. HELB is a feedback inhibitor of DNA end resection. Mol. Cell 61, 405–418 (2016).

    CAS  PubMed  Article  Google Scholar 

  54. 54

    Guler, G. D. et al. Human DNA helicase B (HDHB) binds to replication protein A and facilitates cellular recovery from replication stress. J. Biol. Chem. 287, 6469–6481 (2012).

    CAS  PubMed  Article  Google Scholar 

  55. 55

    Gu, J. et al. Cell cycle-dependent regulation of a human DNA helicase that localizes in DNA damage foci. Mol. Biol. Cell 15, 3320–3332 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56

    Spencer, S. L. et al. The proliferation-quiescence decision is controlled by a bifurcation in CDK2 activity at mitotic exit. Cell 155, 369–383 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57

    Jirawatnotai, S. et al. A function for cyclin D1 in DNA repair uncovered by protein interactome analyses in human cancers. Nature 474, 230–234 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58

    Kanakkanthara, A. et al. Cyclin A2 is an RNA binding protein that controls Mre11 mRNA translation. Science 353, 1549–1552 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59

    Cheong, N., Wang, X., Wang, Y. & Iliakis, G. Loss of S-phase-dependent radioresistance in irs-1 cells exposed to X-rays. Mutat. Res. 314, 77–85 (1994).

    CAS  PubMed  Article  Google Scholar 

  60. 60

    Rothkamm, K., Kruger, I., Thompson, L. H. & Lobrich, M. Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol. Cell Biol. 23, 5706–5715 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61

    Karanam, K., Kafri, R., Loewer, A. & Lahav, G. Quantitative live cell imaging reveals a gradual shift between DNA repair mechanisms and a maximal use of HR in mid S phase. Mol. Cell 47, 320–329 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62

    Saredi, G. et al. H4K20me0 marks post-replicative chromatin and recruits the TONSL-MMS22L DNA repair complex. Nature 534, 714–718 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63

    Piwko, W. et al. RNAi-based screening identifies the Mms22L-Nfkbil2 complex as a novel regulator of DNA replication in human cells. EMBO J. 29, 4210–4222 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64

    Duro, E. et al. Identification of the MMS22L-TONSL complex that promotes homologous recombination. Mol. Cell 40, 632–644 (2010).

    CAS  PubMed  Article  Google Scholar 

  65. 65

    O'Donnell, L. et al. The MMS22L-TONSL complex mediates recovery from replication stress and homologous recombination. Mol. Cell 40, 619–631 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66

    Botuyan, M. V. et al. Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell 127, 1361–1373 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67

    Fradet-Turcotte, A. et al. 53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark. Nature 499, 50–54 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68

    Sjogren, C. & Nasmyth, K. Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae. Curr. Biol. 11, 991–995 (2001).

    CAS  PubMed  Article  Google Scholar 

  69. 69

    Sonoda, E. et al. Scc1/Rad21/Mcd1 is required for sister chromatid cohesion and kinetochore function in vertebrate cells. Dev. Cell 1, 759–770 (2001).

    CAS  PubMed  Article  Google Scholar 

  70. 70

    Bauerschmidt, C. et al. Cohesin promotes the repair of ionizing radiation-induced DNA double-strand breaks in replicated chromatin. Nucleic Acids Res. 38, 477–487 (2010).

    CAS  PubMed  Article  Google Scholar 

  71. 71

    Strom, L., Lindroos, H. B., Shirahige, K. & Sjogren, C. Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol. Cell 16, 1003–1015 (2004).

    PubMed  Article  Google Scholar 

  72. 72

    Unal, E. et al. DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol. Cell 16, 991–1002 (2004).

    PubMed  Article  Google Scholar 

  73. 73

    Kim, J. S., Krasieva, T. B., LaMorte, V., Taylor, A. M. & Yokomori, K. Specific recruitment of human cohesin to laser-induced DNA damage. J. Biol. Chem. 277, 45149–45153 (2002).

    CAS  PubMed  Article  Google Scholar 

  74. 74

    Wilson, M. D. et al. The structural basis of modified nucleosome recognition by 53BP1. Nature 536, 100–103 (2016).

    CAS  PubMed  Article  Google Scholar 

  75. 75

    Zimmermann, M., Lottersberger, F., Buonomo, S. B., Sfeir, A. & de Lange, T. 53BP1 regulates DSB repair using Rif1 to control 5′ end resection. Science 339, 700–704 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. 76

    Di Virgilio, M. et al. Rif1 prevents resection of DNA breaks and promotes immunoglobulin class switching. Science 339, 711–715 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77

    Escribano-Diaz, C. et al. A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol. Cell 49, 872–883 (2013).

    CAS  Article  Google Scholar 

  78. 78

    Feng, L., Fong, K. W., Wang, J., Wang, W. & Chen, J. RIF1 counteracts BRCA1-mediated end resection during DNA repair. J. Biol. Chem. 288, 11135–11143 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. 79

    Callen, E. et al. 53BP1 Mediates productive and mutagenic DNA repair through distinct phosphoprotein interactions. Cell 153, 1266–1280 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80

    Munoz, I. M., Jowsey, P. A., Toth, R. & Rouse, J. Phospho-epitope binding by the BRCT domains of hPTIP controls multiple aspects of the cellular response to DNA damage. Nucleic Acids Res. 35, 5312–5322 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81

    Xu, G. et al. REV7 counteracts DNA double-strand break resection and affects PARP inhibition. Nature 521, 541–544 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82

    Boersma, V. et al. MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5′ end resection. Nature 521, 537–540 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83

    Bouwman, P. et al. 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nat. Struct. Mol. Biol. 17, 688–695 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84

    Bunting, S. F. et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141, 243–254 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. 85

    Cao, L. et al. A selective requirement for 53BP1 in the biological response to genomic instability induced by Brca1 deficiency. Mol. Cell 35, 534–541 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86

    Chapman, J. R., Sossick, A. J., Boulton, S. J. & Jackson, S. P. BRCA1-associated exclusion of 53BP1 from DNA damage sites underlies temporal control of DNA repair. J. Cell Sci. 125, 3529–3534 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87

    Densham, R. M. et al. Human BRCA1-BARD1 ubiquitin ligase activity counteracts chromatin barriers to DNA resection. Nat. Struct. Mol. Biol. 23, 647–655 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. 88

    Chapman, J. R. et al. RIF1 is essential for 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand break resection. Mol. Cell 49, 858–871 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89

    Jacquet, K. et al. The TIP60 complex regulates bivalent chromatin recognition by 53BP1 through direct H4K20me binding and H2AK15 acetylation. Mol. Cell 62, 409–421 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. 90

    Tang, J. et al. Acetylation limits 53BP1 association with damaged chromatin to promote homologous recombination. Nat. Struct. Mol. Biol. 20, 317–325 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. 91

    Ochs, F. et al. 53BP1 fosters fidelity of homology-directed DNA repair. Nat. Struct. Mol. Biol. 23, 714–721 (2016).

    CAS  PubMed  Article  Google Scholar 

  92. 92

    Zeman, M. K. & Cimprich, K. A. Causes and consequences of replication stress. Nat. Cell Biol. 16, 2–9 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. 93

    Semlow, D. R., Zhang, J., Budzowska, M., Drohat, A. C. & Walter, J. C. Replication-dependent unhooking of DNA interstrand cross-links by the NEIL3 glycosylase. Cell 167, 498–511 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. 94

    Kottemann, M. C. & Smogorzewska, A. Fanconi anaemia and the repair of Watson and Crick DNA crosslinks. Nature 493, 356–363 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. 95

    Williams, H. L., Gottesman, M. E. & Gautier, J. The differences between ICL repair during and outside of S phase. Trends Biochem. Sci. 38, 386–393 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. 96

    Marteijn, J. A., Lans, H., Vermeulen, W. & Hoeijmakers, J. H. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat. Rev. Mol. Cell Biol. 15, 465–481 (2014).

    CAS  PubMed  Article  Google Scholar 

  97. 97

    Williams, H. L., Gottesman, M. E. & Gautier, J. Replication-independent repair of DNA interstrand crosslinks. Mol. Cell 47, 140–147 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. 98

    Garcia-Rodriguez, N., Wong, R. P. & Ulrich, H. D. Functions of ubiquitin and SUMO in DNA replication and replication Stress. Front. Genet. 7, 87 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  99. 99

    Karras, G. I. & Jentsch, S. The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase. Cell 141, 255–267 (2010).

    CAS  Article  Google Scholar 

  100. 100

    Daigaku, Y., Davies, A. A. & Ulrich, H. D. Ubiquitin-dependent DNA damage bypass is separable from genome replication. Nature 465, 951–955 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. 101

    Clarke, D. J., Johnson, R. T. & Downes, C. S. Topoisomerase II inhibition prevents anaphase chromatid segregation in mammalian cells independently of the generation of DNA strand breaks. J. Cell Sci. 105, 563–569 (1993).

    CAS  PubMed  Google Scholar 

  102. 102

    Oliveira, R. A., Hamilton, R. S., Pauli, A., Davis, I. & Nasmyth, K. Cohesin cleavage and Cdk inhibition trigger formation of daughter nuclei. Nat. Cell Biol. 12, 185–192 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. 103

    Wechsler, T., Newman, S. & West, S. C. Aberrant chromosome morphology in human cells defective for Holliday junction resolution. Nature 471, 642–646 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. 104

    Matos, J., Blanco, M. G., Maslen, S., Skehel, J. M. & West, S. C. Regulatory control of the resolution of DNA recombination intermediates during meiosis and mitosis. Cell 147, 158–172 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. 105

    Chan, Y. W. & West, S. C. Spatial control of the GEN1 Holliday junction resolvase ensures genome stability. Nat. Commun. 5, 4844 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. 106

    Blanco, M. G., Matos, J. & West, S. C. Dual control of Yen1 nuclease activity and cellular localization by Cdk and Cdc14 prevents genome instability. Mol. Cell 54, 94–106 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. 107

    Eissler, C. L. et al. The Cdk/cDc14 module controls activation of the Yen1 holliday junction resolvase to promote genome stability. Mol. Cell 54, 80–93 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. 108

    Matos, J. & West, S. C. Holliday junction resolution: regulation in space and time. DNA Repair 19, 176–181 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. 109

    Le Beau, M. M. et al. Replication of a common fragile site, FRA3B, occurs late in S phase and is delayed further upon induction: implications for the mechanism of fragile site induction. Hum. Mol. Genet. 7, 755–761 (1998).

    CAS  PubMed  Article  Google Scholar 

  110. 110

    Glover, T. W., Berger, C., Coyle, J. & Echo, B. DNA polymerase alpha inhibition by aphidicolin induces gaps and breaks at common fragile sites in human chromosomes. Hum. Genet. 67, 136–142 (1984).

    CAS  PubMed  Article  Google Scholar 

  111. 111

    Durkin, S. G. & Glover, T. W. Chromosome fragile sites. Annu. Rev. Genet. 41, 169–192 (2007).

    CAS  PubMed  Article  Google Scholar 

  112. 112

    Ying, S. et al. MUS81 promotes common fragile site expression. Nat. Cell Biol. 15, 1001–1007 (2013).

    CAS  PubMed  Article  Google Scholar 

  113. 113

    Naim, V., Wilhelm, T., Debatisse, M. & Rosselli, F. ERCC1 and MUS81-EME1 promote sister chromatid separation by processing late replication intermediates at common fragile sites during mitosis. Nat. Cell Biol. 15, 1008–1015 (2013).

    CAS  PubMed  Article  Google Scholar 

  114. 114

    Ehmsen, K. T. & Heyer, W. D. Saccharomyces cerevisiae Mus81-Mms4 is a catalytic, DNA structure-selective endonuclease. Nucleic Acids Res. 36, 2182–2195 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  115. 115

    Fricke, W. M., Bastin-Shanower, S. A. & Brill, S. J. Substrate specificity of the Saccharomyces cerevisiae Mus81-Mms4 endonuclease. DNA Repair 4, 243–251 (2005).

    CAS  PubMed  Article  Google Scholar 

  116. 116

    Minocherhomji, S. et al. Replication stress activates DNA repair synthesis in mitosis. Nature 528, 286–290 (2015).

    CAS  PubMed  Article  Google Scholar 

  117. 117

    Chan, K. L., North, P. S. & Hickson, I. D. BLM is required for faithful chromosome segregation and its localization defines a class of ultrafine anaphase bridges. EMBO J. 26, 3397–3409 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. 118

    Biebricher, A. et al. PICH: a DNA translocase specially adapted for processing anaphase bridge DNA. Mol. Cell 51, 691–701 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. 119

    Hengeveld, R. C. et al. Rif1 is required for resolution of ultrafine DNA bridges in anaphase to ensure genomic stability. Dev. Cell 34, 466–474 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  120. 120

    Zirkle, R. E. & Bloom, W. Irradiation of parts of individual cells. Science 117, 487–493 (1953).

    CAS  PubMed  Article  Google Scholar 

  121. 121

    Rieder, C. L. & Cole, R. W. Entry into mitosis in vertebrate somatic cells is guarded by a chromosome damage checkpoint that reverses the cell cycle when triggered during early but not late prophase. J. Cell Biol. 142, 1013–1022 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  122. 122

    Terasawa, M., Shinohara, A. & Shinohara, M. Canonical non-homologous end joining in mitosis induces genome instability and is suppressed by M-phase-specific phosphorylation of XRCC4. PLoS Genet. 10, e1004563 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  123. 123

    Metzger, L. & Iliakis, G. Kinetics of DNA double-strand break repair throughout the cell cycle as assayed by pulsed field gel electrophoresis in CHO cells. Int. J. Radiat. Biol. 59, 1325–1339 (1991).

    CAS  PubMed  Article  Google Scholar 

  124. 124

    Mikhailov, A., Cole, R. W. & Rieder, C. L. DNA damage during mitosis in human cells delays the metaphase/anaphase transition via the spindle-assembly checkpoint. Curr. Biol. 12, 1797–1806 (2002).

    CAS  Article  Google Scholar 

  125. 125

    Musacchio, A. Spindle assembly checkpoint: the third decade. Phil. Trans. R. Soc. B 366, 3595–3604 (2011).

    CAS  PubMed  Article  Google Scholar 

  126. 126

    Rogakou, E. P., Boon, C., Redon, C. & Bonner, W. M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 146, 905–916 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  127. 127

    Kato, T. A., Okayasu, R. & Bedford, J. S. Comparison of the induction and disappearance of DNA double strand breaks and gamma-H2AX foci after irradiation of chromosomes in G1-phase or in condensed metaphase cells. Mutat. Res. 639, 108–112 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  128. 128

    Giunta, S., Belotserkovskaya, R. & Jackson, S. P. DNA damage signaling in response to double-strand breaks during mitosis. J. Cell Biol. 190, 197–207 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  129. 129

    van Vugt, M. A. et al. A mitotic phosphorylation feedback network connects Cdk1, Plk1, 53BP1, and Chk2 to inactivate the G(2)/M DNA damage checkpoint. PLoS Biol. 8, e1000287 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  130. 130

    Gomez-Godinez, V. et al. Analysis of DNA double-strand break response and chromatin structure in mitosis using laser microirradiation. Nucleic Acids Res. 38, e202 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  131. 131

    Mari, P. O. et al. Dynamic assembly of end-joining complexes requires interaction between Ku70/80 and XRCC4. Proc. Natl Acad. Sci. USA 103, 18597–18602 (2006).

    CAS  PubMed  Article  Google Scholar 

  132. 132

    Britton, S., Coates, J. & Jackson, S. P. A new method for high-resolution imaging of Ku foci to decipher mechanisms of DNA double-strand break repair. J. Cell Biol. 202, 579–595 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  133. 133

    Nelson, G., Buhmann, M. & von Zglinicki, T. DNA damage foci in mitosis are devoid of 53BP1. Cell Cycle 8, 3379–3383 (2009).

    CAS  PubMed  Article  Google Scholar 

  134. 134

    Orthwein, A. et al. Mitosis inhibits DNA double-strand break repair to guard against telomere fusions. Science 344, 189–193 (2014).

    CAS  Article  Google Scholar 

  135. 135

    Jullien, D., Vagnarelli, P., Earnshaw, W. C. & Adachi, Y. Kinetochore localisation of the DNA damage response component 53BP1 during mitosis. J. Cell Sci. 115, 71–79 (2002).

    CAS  PubMed  Google Scholar 

  136. 136

    Benada, J., Burdova, K., Lidak, T., von Morgen, P. & Macurek, L. Polo-like kinase 1 inhibits DNA damage response during mitosis. Cell Cycle 14, 219–231 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  137. 137

    Lee, D. H. et al. Dephosphorylation enables the recruitment of 53BP1 to double-strand DNA breaks. Mol. Cell 54, 512–525 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  138. 138

    Hayashi, M. T., Cesare, A. J., Fitzpatrick, J. A., Lazzerini-Denchi, E. & Karlseder, J. A telomere-dependent DNA damage checkpoint induced by prolonged mitotic arrest. Nat. Struct. Mol. Biol. 19, 387–394 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  139. 139

    Gomez, M. et al. PARP1 is a TRF2-associated poly(ADP-ribose)polymerase and protects eroded telomeres. Mol. Biol. Cell 17, 1686–1696 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  140. 140

    Hayashi, M. T., Cesare, A. J., Rivera, T. & Karlseder, J. Cell death during crisis is mediated by mitotic telomere deprotection. Nature 522, 492–496 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  141. 141

    Peterson, S. E. et al. Cdk1 uncouples CtIP-dependent resection and Rad51 filament formation during M-phase double-strand break repair. J. Cell Biol. 194, 705–720 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  142. 142

    Ayoub, N. et al. The carboxyl terminus of Brca2 links the disassembly of Rad51 complexes to mitotic entry. Curr. Biol. 19, 1075–1085 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  143. 143

    Freire, R., van Vugt, M. A., Mamely, I. & Medema, R. H. Claspin: timing the cell cycle arrest when the genome is damaged. Cell Cycle 5, 2831–2834 (2006).

    CAS  PubMed  Article  Google Scholar 

  144. 144

    Oakley, G. G. et al. RPA phosphorylation in mitosis alters DNA binding and protein-protein interactions. Biochemistry 42, 3255–3264 (2003).

    CAS  PubMed  Article  Google Scholar 

  145. 145

    Anantha, R. W., Sokolova, E. & Borowiec, J. A. RPA phosphorylation facilitates mitotic exit in response to mitotic DNA damage. Proc. Natl Acad. Sci. USA 105, 12903–12908 (2008).

    CAS  PubMed  Article  Google Scholar 

  146. 146

    Esashi, F. et al. CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair. Nature 434, 598–604 (2005).

    CAS  PubMed  Article  Google Scholar 

  147. 147

    Krajewska, M. et al. Forced activation of Cdk1 via wee1 inhibition impairs homologous recombination. Oncogene 32, 3001–3008 (2013).

    CAS  PubMed  Article  Google Scholar 

  148. 148

    Royou, A., Gagou, M. E., Karess, R. & Sullivan, W. BubR1- and Polo-coated DNA tethers facilitate poleward segregation of acentric chromatids. Cell 140, 235–245 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  149. 149

    Giunta, S. & Jackson, S. P. Give me a break, but not in mitosis: the mitotic DNA damage response marks DNA double-strand breaks with early signaling events. Cell Cycle 10, 1215–1221 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  150. 150

    O'Connor, M. J. Targeting the DNA damage response in cancer. Mol. Cell 60, 547–560 (2015).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

We thank R. Szilard, M. Zimmermann, S. Noordermeer and A. Sartori for critical reading of the manuscript, as well as D. D'Amours and J. Lukas for stimulating discussions and advice. N.H. is a long-term fellow of the Human Science Frontier Program. D.D. is a Canada Research Chair (Tier 1) in the Molecular Mechanisms of Genome Integrity. Funding for work in the laboratory of D.D relating to the regulation of DNA repair by the cell cycle include CIHR grant FDN143343 and a Grant-in-Aid from the Krembil Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel Durocher.

Ethics declarations

Competing interests

N.H. declares no competing financial interests. D.D. is a paid advisor and receives funding from CRISPR Therapeutics, and also receives funding from Blueline Bioscience.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hustedt, N., Durocher, D. The control of DNA repair by the cell cycle. Nat Cell Biol 19, 1–9 (2017). https://doi.org/10.1038/ncb3452

Download citation

Further reading