Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs

Abstract

Mitochondrial diseases are commonly caused by mutated mitochondrial DNA (mtDNA), which in most cases coexists with wild-type mtDNA, resulting in mtDNA heteroplasmy. We have engineered transcription activator-like effector nucleases (TALENs) to localize to mitochondria and cleave different classes of pathogenic mtDNA mutations. Mitochondria-targeted TALEN (mitoTALEN) expression led to permanent reductions in deletion or point-mutant mtDNA in patient-derived cells, raising the possibility that these mitochondrial nucleases can be therapeutic for some mitochondrial diseases.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Rationale, verification and efficacy of the Δ5-mitoTALEN for elimination of mtDNAs with the common deletion.
Figure 2: Rationale and efficacy of the 14459A-mitoTALEN against the pathogenic m.14459A mtDNA point mutation.

Accession codes

Accessions

NCBI Reference Sequence

References

  1. 1

    Schon, E.A., DiMauro, S. & Hirano, M. Nat. Rev. Genet. 13, 878–890 (2012).

    CAS  Article  Google Scholar 

  2. 2

    Vafai, S.B. & Mootha, V.K. Nature 491, 374–383 (2012).

    CAS  Article  Google Scholar 

  3. 3

    Wallace, D.C. Environ. Mol. Mutagen. 51, 440–450 (2010).

    CAS  PubMed  Google Scholar 

  4. 4

    Bacman, S.R., Williams, S.L., Garcia, S. & Moraes, C.T. Gene Ther. 17, 713–720 (2010).

    CAS  Article  Google Scholar 

  5. 5

    Comte, C. et al. Nucleic Acids Res. 41, 418–433 (2013).

    CAS  Article  Google Scholar 

  6. 6

    Taylor, R.W., Chinnery, P.F., Turnbull, D.M. & Lightowlers, R.N. Nat. Genet. 15, 212–215 (1997).

    CAS  Article  Google Scholar 

  7. 7

    Minczuk, M., Papworth, M.A., Miller, J.C., Murphy, M.P. & Klug, A. Nucleic Acids Res. 36, 3926–3938 (2008).

    CAS  Article  Google Scholar 

  8. 8

    Hockemeyer, D. et al. Nat. Biotechnol. 29, 731–734 (2011).

    CAS  Article  Google Scholar 

  9. 9

    Sung, Y.H. et al. Nat. Biotechnol. 31, 23–24 (2013).

    CAS  Article  Google Scholar 

  10. 10

    Schon, E.A. et al. Science 244, 346–349 (1989).

    CAS  Article  Google Scholar 

  11. 11

    Corral-Debrinski, M. et al. Nat. Genet. 2, 324–329 (1992).

    CAS  Article  Google Scholar 

  12. 12

    Soong, N.W., Hinton, D.R., Cortopassi, G. & Arnheim, N. Nat. Genet. 2, 318–323 (1992).

    CAS  Article  Google Scholar 

  13. 13

    Diaz, F. et al. Nucleic Acids Res. 30, 4626–4633 (2002).

    CAS  Article  Google Scholar 

  14. 14

    Jun, A.S., Trounce, I.A., Brown, M.D., Shoffner, J.M. & Wallace, D.C. Mol. Cell Biol. 16, 771–777 (1996).

    CAS  Article  Google Scholar 

  15. 15

    Bacman, S.R., Williams, S.L., Duan, D. & Moraes, C.T. Gene Ther. 19, 1101–1106 (2012).

    CAS  Article  Google Scholar 

  16. 16

    Carling, P.J., Cree, L.M. & Chinnery, P.F. Mitochondrion 11, 686–692 (2011).

    CAS  Article  Google Scholar 

  17. 17

    Moraes, C.T. Trends Genet. 17, 199–205 (2001).

    CAS  Article  Google Scholar 

  18. 18

    Szymczak, A.L. et al. Nat. Biotechnol. 22, 589–594 (2004).

    CAS  Article  Google Scholar 

  19. 19

    Liddell, L., Manthey, G., Pannunzio, N. & Bailis, A. J. Vis. Exp. e3150 http://dx.doi.org/10.3791/3150 (2011).

  20. 20

    King, M.P. & Attardi, G. Science 246, 500–503 (1989).

    CAS  Article  Google Scholar 

  21. 21

    Sciacco, M., Bonilla, E., Schon, E.A., DiMauro, S. & Moraes, C.T. Hum. Mol. Genet. 3, 13–19 (1994).

    CAS  Article  Google Scholar 

  22. 22

    Bacman, S.R. & Moraes, C.T. Methods Cell Biol. 80, 503–524 (2007).

    CAS  Article  Google Scholar 

  23. 23

    Jun, A.S., Brown, M.D. & Wallace, D.C. Proc. Natl. Acad. Sci. USA 91, 6206–6210 (1994).

    CAS  Article  Google Scholar 

  24. 24

    Bayona-Bafaluy, M.P., Blits, B., Battersby, B.J., Shoubridge, E.A. & Moraes, C.T. Proc. Natl. Acad. Sci. USA 102, 14392–14397 (2005).

    CAS  Article  Google Scholar 

  25. 25

    Moraes, C.T., Ricci, E., Bonilla, E., DiMauro, S. & Schon, E.A. Am. J. Hum. Genet. 50, 934–949 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Martinez, B. et al. J. Neurochem. 78, 1054–1063 (2001).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grants 5R01EY010804, 1R01AG036871 and 1R01NS079965, the Muscular Dystrophy Association and The JDM Fund. We thank M. Hirano (Columbia University) for the G14459A cells, F. Delacote (Cellectis bioresearch) for expert assistance in designing TALENs, G. Zhai for critically reading the manuscript and A. Pickrell for critical scientific suggestions.

Author information

Affiliations

Authors

Contributions

S.R.B. and S.L.W. designed and conducted most experiments and assisted in writing the manuscript. M.P. assisted in the quantification of mtDNA deletions and in writing the manuscript. S.P. conducted the complex I activity experiments and assisted in writing the manuscript. C.T.M. designed and supervised the project and wrote the manuscript.

Corresponding author

Correspondence to Carlos T Moraes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Table 1 (PDF 12499 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bacman, S., Williams, S., Pinto, M. et al. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat Med 19, 1111–1113 (2013). https://doi.org/10.1038/nm.3261

Download citation

Further reading