A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells

Abstract

Translation of the CRISPR–Cas9 system to human therapeutics holds high promise. However, specificity remains a concern especially when modifying stem cell populations. We show that existing rationally engineered Cas9 high-fidelity variants have reduced on-target activity when using the therapeutically relevant ribonucleoprotein (RNP) delivery method. Therefore, we devised an unbiased bacterial screen to isolate variants that retain activity in the RNP format. Introduction of a single point mutation, p.R691A, in Cas9 (high-fidelity (HiFi) Cas9) retained the high on-target activity of Cas9 while reducing off-target editing. HiFi Cas9 induces robust AAV6-mediated gene targeting at five therapeutically relevant loci (HBB, IL2RG, CCR5, HEXB, and TRAC) in human CD34+ hematopoietic stem and progenitor cells (HSPCs) as well as primary T cells. We also show that HiFi Cas9 mediates high-level correction of the sickle cell disease (SCD)-causing p.E6V mutation in HSPCs derived from patients with SCD. We anticipate that HiFi Cas9 will have wide utility for both basic science and therapeutic genome-editing applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: On-target activity of previously described high-fidelity Cas9 mutants delivered as RNPs in human cells.
Fig. 2: Unbiased bacterial selection for cas9 mutants that reduce off-target editing and maintain on-target potency.
Fig. 3: The HiFi Cas9-R691A mutant maintains on-target editing activity when delivered as a RNP.
Fig. 4: HiFi Cas9 globally reduces off-target activity with both stable Cas9 expression and RNP delivery.
Fig. 5: RNP HiFi Cas9 facilitates on-target editing potency near the WT level, with large OTE reductions in primary CD34+ HSPCs.
Fig. 6: HiFi Cas9 delivered as a RNP mediates robust p.E6V HBB gene correction in CD34+ SCD-HSPCs while significantly reducing off-target activity.

References

  1. 1.

    Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR–Cas9. Science 346, 1258096 (2014).

  4. 4.

    Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR–Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Dagdas, Y. S. et al. A conformational checkpoint between DNA binding and cleavage by CRISPR–Cas9. Sci. Adv. 3, eaao0027 (2017).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Sternberg, S. H., LaFrance, B., Kaplan, M. & Doudna, J. A. Conformational control of DNA target cleavage by CRISPR–Cas9. Nature 527, 110–113 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Kass, E. M. & Jasin, M. Collaboration and competition between DNA double-strand break repair pathways. FEBS Lett. 584, 3703–3708 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Porteus, M. H. Towards a new era in medicine: therapeutic genome editing. Genome Biol. 16, 286 (2015).

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Dever, D. P. & Porteus, M. H. The changing landscape of gene editing in hematopoietic stem cells: a step towards Cas9 clinical translation. Curr. Opin. Hematol. 24, 481–488 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR–Cas nucleases. Nat. Biotechnol. 33, 187–197 (2015).

  11. 11.

    Cameron, P. et al. Mapping the genomic landscape of CRISPR–Cas9 cleavage. Nat. Methods 14, 600–606 (2017).

    CAS  PubMed  Google Scholar 

  12. 12.

    Hendel, A. et al. Chemically modified guide RNAs enhance CRISPR–Cas genome editing in human primary cells. Nat. Biotechnol. 33, 985–989 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Gundry, M. C. et al. Highly efficient genome editing of murine and human hematopoietic progenitor cells by CRISPR/Cas9. Cell Reports 17, 1453–1461 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Gundry, M. C. et al. Technical considerations for the use of CRISPR/Cas9 in hematology research. Exp. Hematol. 54, 4–11 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Dever, D. P. et al. CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature 539, 384–389 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    DeWitt, M. A. et al. Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Sci. Transl. Med. 8, 360ra134 (2016).

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Hultquist, J. F. et al. A Cas9 ribonucleoprotein platform for functional genetic studies of HIV–host interactions in primary human t cells. Cell Reports 17, 1438–1452 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Schumann, K. et al. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proc. Natl. Acad. Sci. USA 112, 10437–10442 (2015).

    CAS  Google Scholar 

  19. 19.

    Kim, S., Kim, D., Cho, S. W., Kim, J. & Kim, J. S. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 24, 1012–1019 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Gatti, R. A., Meuwissen, H. J., Allen, H. D., Hong, R. & Good, R. A. Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet 2, 1366–1369 (1968).

    CAS  PubMed  Google Scholar 

  21. 21.

    Johnson, F. L. et al. Bone-marrow transplantation in a patient with sickle-cell anemia. N. Engl. J. Med. 311, 780–783 (1984).

    CAS  PubMed  Google Scholar 

  22. 22.

    Lucarelli, G. et al. Allogeneic marrow transplantation for thalassemia. Exp. Hematol. 12, 676–681 (1984).

    CAS  PubMed  Google Scholar 

  23. 23.

    Naldini, L. Gene therapy returns to centre stage. Nature 526, 351–360 (2015).

    CAS  PubMed  Google Scholar 

  24. 24.

    De Ravin, S. S. et al. CRISPR–Cas9 gene repair of hematopoietic stem cells from patients with X-linked chronic granulomatous disease. Sci. Transl. Med. 9, eaah3480 (2017).

    PubMed  Google Scholar 

  25. 25.

    Traxler, E. A. et al. A genome-editing strategy to treat β-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. Nat. Med. 22, 987–990 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Slaymaker, I. M. et al. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84–88 (2016).

    CAS  PubMed  Google Scholar 

  27. 27.

    Kleinstiver, B. P. et al. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490–495 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Chen, J. S. et al. Enhanced proofreading governs CRISPR–Cas9 targeting accuracy. Nature 550, 407–410 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Liang, X. et al. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J. Biotechnol. 208, 44–53 (2015).

    CAS  PubMed  Google Scholar 

  30. 30.

    Rees, H. A. et al. Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat. Commun. 8, 15790 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Kleinstiver, B. P. et al. Engineered CRISPR–Cas9 nucleases with altered PAM specificities. Nature 523, 481–485 (2015).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Chen, Z. & Zhao, H. A highly sensitive selection method for directed evolution of homing endonucleases. Nucleic Acids Res. 33, e154 (2005).

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Dobosy, J. R. et al. RNase H-dependent PCR (rhPCR): improved specificity and single nucleotide polymorphism detection using blocked cleavable primers. BMC Biotechnol. 11, 80 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Haeussler, M. et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 17, 148 (2016).

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Wang, J. et al. Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors. Nat. Biotechnol. 33, 1256–1263 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Wang, J. et al. Highly efficient homology-driven genome editing in human T cells by combining zinc-finger nuclease mRNA and AAV6 donor delivery. Nucleic Acids Res. 44, e30 (2016).

    PubMed  Google Scholar 

  37. 37.

    De Ravin, S. S. et al. Targeted gene addition in human CD34+ hematopoietic cells for correction of X-linked chronic granulomatous disease. Nat. Biotechnol. 34, 424–429 (2016).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Sather, B. D. et al. Efficient modification of CCR5 in primary human hematopoietic cells using a megaTAL nuclease and AAV donor template. Sci. Transl. Med. 7, 307ra156 (2015).

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Eyquem, J. et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543, 113–117 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Schiroli, G. et al. Preclinical modeling highlights the therapeutic potential of hematopoietic stem cell gene editing for correction of SCID-X1. Sci. Transl. Med. 9, eaan0820 (2017).

    Google Scholar 

  41. 41.

    Casini, A. et al. A highly specific SpCas9 variant is identified by in vivo screening in yeast. Nat. Biotechnol. 36, 265–271 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Osborn, M. J. et al. Evaluation of TCR gene editing achieved by TALENs, CRISPR/Cas9, and megaTAL nucleases. Mol. Ther. 24, 570–581 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Tebas, P. et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med. 370, 901–910 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    MacLeod, D. T. et al. Integration of a CD19 CAR into the TCR alpha chain locus streamlines production of allogeneic gene-edited CAR T cells. Mol. Ther. 25, 949–961 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Hoban, M. D. et al. Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells. Blood 125, 2597–2604 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Hoban, M. D. et al. CRISPR/Cas9-mediated correction of the sickle mutation in human CD34+ cells. Mol. Ther. 24, 1561–1569 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Dulmovits, B. M. et al. Pomalidomide reverses γ-globin silencing through the transcriptional reprogramming of adult hematopoietic progenitors. Blood 127, 1481–1492 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Romero, Z. et al. β-globin gene transfer to human bone marrow for sickle cell disease. J. Clin. Invest. https://doi.org/10.1172/JCI67930 (2013).

    CAS  Google Scholar 

  49. 49.

    Hu, J. et al. Isolation and functional characterization of human erythroblasts at distinct stages: implications for understanding of normal and disordered erythropoiesis in vivo. Blood 121, 3246–3253 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Miller, J. B. et al. Non-viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angew. Chem. Int. Edn Engl. 56, 1059–1063 (2017).

    CAS  Google Scholar 

  52. 52.

    Yin, H. et al. Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat. Biotechnol. 35, 1179–1187 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Wang, M. et al. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc. Natl. Acad. Sci. USA 113, 2868–2873 (2016).

    CAS  PubMed  Google Scholar 

  54. 54.

    Ramakrishna, S. et al. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res. 24, 1020–1027 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Haldimann, A., Daniels, L. L. & Wanner, B. L. Use of new methods for construction of tightly regulated arabinose and rhamnose promoter fusions in studies of the Escherichia coli phosphate regulon. J. Bacteriol. 180, 1277–1286 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Jacobi, A. M. et al. Simplified CRISPR tools for efficient genome editing and streamlined protocols for their delivery into mammalian cells and mouse zygotes. Methods 121-122, 16–28 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Williams, M., Rainville, I. R. & Nicklas, J. A. Use of inverse PCR to amplify and sequence breakpoints of HPRT deletion and translocation mutations. Environ. Mol. Mutagen. 39, 22–32 (2002).

    CAS  PubMed  Google Scholar 

  58. 58.

    Lennox, K. A., Vakulskas, C. A. & Behlke, M. A. Non-nucleotide modification of anti-miRNA oligonucleotides. Methods Mol. Biol. 1517, 51–69 (2017).

    CAS  PubMed  Google Scholar 

  59. 59.

    Munteanu, B., Braun, M. & Boonrod, K. Improvement of PCR reaction conditions for site-directed mutagenesis of big plasmids. J. Zhejiang Univ. Sci. B 13, 244–247 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Karvelis, T. et al. crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus. RNA Biol. 10, 841–851 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Bak, R. O. et al. Multiplexed genetic engineering of human hematopoietic stem and progenitor cells using CRISPR/Cas9 and AAV6. eLife 6, e27873 (2017).

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Bak, R. O. & Porteus, M. H. CRISPR-mediated integration of large gene cassettes using AAV donor vectors. Cell Reports 20, 750–756 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Khan, I. F., Hirata, R. K. & Russell, D. W. AAV-mediated gene targeting methods for human cells. Nat. Protoc. 6, 482–501 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Aurnhammer, C. et al. Universal real-time PCR for the detection and quantification of adeno-associated virus serotype 2–derived inverted terminal repeat sequences. Hum. Gene Ther. Methods 23, 18–28 (2012).

    CAS  PubMed  Google Scholar 

  67. 67.

    Chicaybam, L., Sodre, A. L., Curzio, B. A. & Bonamino, M. H. An efficient low cost method for gene transfer to T lymphocytes. PLoS One 8, e60298 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Brinkman, E. K., Chen, T., Amendola, M. & van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, e168 (2014).

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Cradick, T. J., Qiu, P., Lee, C. M., Fine, E. J. & Bao, G. COSMID: a web-based tool for identifying and validating CRISPR/Cas off-target sites. Mol. Ther. Nucleic Acids 3, e214 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Lee, C. M., Cradick, T. J. & Bao, G. The Neisseria meningitidis CRISPR–Cas9 system enables specific genome editing in mammalian cells. Mol. Ther. 24, 645–654 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Ross, M. G. et al. Characterizing and measuring bias in sequence data. Genome Biol. 14, R51 (2013).

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Quail, M. A. et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13, 341 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Güell, M., Yang, L. & Church, G. M. Genome editing assessment using CRISPR Genome Analyzer (CRISPR-GA). Bioinformatics 30, 2968–2970 (2014).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Mantri for collecting and purifying the HSPCs. We thank K. Lennox for critical review of the manuscript. The Band3 APC antibody was a kind gift from A. Narla and M. Narla (Stanford University). M.H.P. gratefully acknowledges the support of the Amon Carter Foundation, the Laurie Kraus Lacob Faculty Scholar Award in Pediatric Translational Research and NIH grant support R01-AI097320 and R01-AI120766. G.B. acknowledges support from the Cancer Prevention and Research Institute of Texas (RR14008 and RP170721). We thank the Binns Program for Cord Blood Research at Stanford University for cord-blood-derived CD34+ HSPCs and also for SCD-HSPCs. Patients with SCD consented to the use of CD34+ HSPCs for research with the accompanying IRB approval.

Author information

Affiliations

Authors

Contributions

C.A.V. performed and designed the bacterial screen and subsequent identification of the HiFi mutants. C.A.V., M.A.C., and N.M.B. cloned and purified all proteins examined in this study. C.A.V., G.R.R., R.T., A.M.J., and M.S.M. performed NGS on-target and off-target editing experiments with RNP in human cells. C.A.V., M.A.C., and S.Y. created and characterized the HEK293 Cas9 stable cell lines. D.P.D., J.C., R.O.B., V.W., M.P.-D., and N.G.-O. carried out experiments related to HSPC and T cell gene editing. G.B., C.M.L., and S.H.P. carried out the NGS analysis of HSPC HBB editing events. W.S. carried out the HPLC analysis of hemoglobin tetramers. M.A.B. and M.H.P. directed the research and participated in the design and interpretation of the experiments and the writing of the manuscript. C.A.V., D.P.D., M.H.P., and M.A.B. wrote the manuscript with assistance from all authors.

Corresponding authors

Correspondence to Matthew H. Porteus or Mark A. Behlke.

Ethics declarations

Competing interests

M.H.P. is a consultant and has equity interest in CRISPR Tx, but CRISPR Tx had no input or opinions on the subject matter described in this manuscript. C.A.V., G.R.R., R.T., A.M.J., M.A.C., N.M.B., M.S.M., S.Y., and M.A.B. are employees of Integrated DNA Technologies (IDT), which sells reagents similar to some described in the manuscript.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 1–5

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vakulskas, C.A., Dever, D.P., Rettig, G.R. et al. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat Med 24, 1216–1224 (2018). https://doi.org/10.1038/s41591-018-0137-0

Download citation

Further reading