The regulatory current status of plant breeding technologies in some Latin American and the Caribbean countries

Abstract

Precision biotechnologies have appeared on the horizon resulting in a plethora of possibilities to modify the genome of different organisms with relatively easy application, low cost, and high precision. These technologies make it possible to work with a very simple biological system and have great potential for medicine, and agriculture. Latin American is embracing the technology and researchers are already developing tropical products from its use. The following article explains the operation of these technologies, and some considerations about its regulation among counties in Latin America and the Caribbean region. Survey results demonstrated that seven countries (Argentina, Brazil, Colombia, Chile, Guatemala, Honduras, and Paraguay) have a clearly defined and operational legal framework for new breeding technologies. Nevertheless, the majority of countries in the region have no experience regarding these technologies and lack legal clarity. Therefore, these countries require regulatory clarity to legally differentiate those products of gene editing that are comparable to conventional breeding and those that can be legally defined as a genetically modified organism.

Key message

New precision biotechnologies could introduce advantageous traits for the improvement of crops, which could be available for the consumers in Latin America and the Caribbean region very soon. Nevertheless, governments should consider the regulatory framework of genome editing technologies and establish appropriate regulations, if necessary, without representing an obstacle to the commercialization of products derived from them.

This is a preview of subscription content, log in to check access.

Fig. 1

(Adapted from Eriksson et al. 2019)

Notes

  1. 1.

    Declaración de los Ministros de Agricultura del Consejo Agropecuario del Sur (CAS) sobre técnicas de edición génica. Comunicación de Argentina, Australia, Brasil, Canadá, los Estados Unidos de América, Guatemala, Honduras, Paraguay, República Dominicana y Uruguay. https://G/Sps/Gen/1658/Rev.3. Accessed 17 July 2019.

  2. 2.

    Declaración de los Ministros de Agricultura del Consejo Agropecuario del Sur (Cas) sobre técnicas de edición génica. Comunicación de Argentina. https://docs.wto.org/dol2fe/Pages/FE_Search/DDFDocuments/252340/s/G/SPS/GEN1699.pdf. Accessed 17 July 2019.

References

  1. Ambrozevicius L (2018) Precision Breeding Innovation Techniques (PBI) “TIMP - Técnicas Inovadoras de Melhoramento de Precisão”. In: Genome editing seminar for biotechnology regulators in the Americas. Calí, Colombia, 4–5 April

  2. Araki M, Ishii T (2015) Towards social acceptance of plant breeding by genome editing. Trends Plant Sci 20:145–149. https://doi.org/10.1016/j.tplants.2015.01.010

    CAS  Article  PubMed  Google Scholar 

  3. Argentina.gob.ar (2018) Caballos clonados con genes editados, otra hazaña de científicos argentinos. https://www.argentina.gob.ar/noticias/caballos-clonados-con-genes-editados-otra-hazana-de-cientificos-argentinos. Accessed 17 Aug 2019

  4. Arruabarrena A, Lado J, Stange CR, González-Arcos M, Rivas CF, Vidal S (2019) Mejoramiento de precisión para promover la acumulación de licopeno en frutos de mandarina y tomate. In: X Encuentro Latinoamericano y del Caribe de Biotecnología Agropecuaria y XI Simposio REDBIO Argentina. Libro de Resúmenes. Montevideo, Uruguay, 12–15 November. https://doi.org/10.35676/INIA/ST.253

  5. Barman HN, Sheng Z, Fiaz S et al (2019) Generation of a new thermo-sensitive genic male sterile rice line by targeted mutagenesis of TMS5 gene through CRISPR/Cas9 system. BMC Plant Biol 19:109. https://doi.org/10.1186/s12870-019-1715-0

    Article  PubMed  PubMed Central  Google Scholar 

  6. Barrantes E (2017) UCR trabaja en nueva variedad de arroz tolerante a la sequía y la salinidad. https://semanariouniversidad.com/universitarias/ucr-trabaja-nueva-variedad-arroz-tolerante-la-sequia-la-salinidad/. Accessed 30 August 2019

  7. Cao HX, Wenqin W, Hien TTL, Giang THV (2016) The power of CRISPR-CAS9-induced genome editing to speed up plant breeding. Int J Genomics. https://doi.org/10.1155/2016/5078796

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cartagena protocol on biosafety to the convention on biological diversity. https://bch.cbd.int/protocol/. Accessed 30 July 2019.

  9. Chen R, Xu Q, Liu Y, Zhang J, Ren D, Wang G, Liu Y (2018) Generation of transgene-free maize male sterile lines using the CRISPR/Cas9 system. Front Plant Sci 9:1180. https://doi.org/10.3389/fpls.2018.01180

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cockcroft CE, Herrera-Estrella L, Borroto Nordelo CG (2004). Agricultural biotechnology in Latin America and the Caribbean. In Christou P, Klee H (eds) Handbook of plant biotechnology, Wiley, London, pp 1243–1291. https://doi.org/10.1002/0470869143.kc067

  11. Coronel MP, Fleitas AL, Vidal S (2019) Desarrollo de una metodología de remplazo alélico optimizada para soja utilizando un modelo de resistencia a herbicida. In: X Encuentro Latinoamericano y del Caribe de Biotecnología Agropecuaria y XI Simposio REDBIO Argentina. Libro de Resúmenes. Montevideo, Uruguay, 12–15 November. https://doi.org/10.35676/INIA/ST.253

  12. Da Silva DA, Bonnecarrère V, Vidal S (2019) Agregado de valor a la soja mediante el desarrollo de variedades nacionales, no transgénicas, para consumo humano. In: X Encuentro Latinoamericano y del Caribe de Biotecnología Agropecuaria y XI Simposio REDBIO Argentina. Libro de Resúmenes. Montevideo, Uruguay, 12–15 November. https://doi.org/10.35676/INIA/ST.253

  13. de la León ODI, Thorsteinsdóttir H, Calderón-Salinas JV (2018) The rise of health biotechnology research in Latin America: a scientometric analysis of health biotechnology production and impact. PLoS ONE. https://doi.org/10.1371/journal.pone.0191267

    Article  Google Scholar 

  14. Dobrovidova O. 2019. Russia joins in global gene-editing bonanza. Nature. https://www.nature.com/articles/d41586-019-01519-6. Accessed 17 July 2019

  15. Eckerstorfer MF, Dolezel M, Heissenberger A, Miklau M, Reichenbecher W, Steinbrecher RA, Waßmann F (2019a) An EU perspective on biosafety considerations for plants developed by genome editing and other new genetic modification techniques (nGMs). Front Bioeng Biotechnol 7:31. https://doi.org/10.3389/fbioe.2019.00031

    Article  PubMed  PubMed Central  Google Scholar 

  16. Eckerstorfer MF, Engelhard M, Heissenberger A, Simon S, Teichmann H (2019b) Plants developed by new genetic modification techniques—comparison of existing regulatory frameworks in the EU and non-EU countries. Front Bioeng Biotechnol 7:26. https://doi.org/10.3389/fbioe.2019.00026

    Article  PubMed  PubMed Central  Google Scholar 

  17. Eriksson D (2019) The evolving EU regulatory framework for precision breeding. Theor Appl Genet 132:569–573. https://doi.org/10.1007/s00122-018-3200-9

    Article  PubMed  Google Scholar 

  18. Eriksson D, Kershen D, Nepomuceno A, Pogson BJ, Prieto H, Purnhagen K, Smyth S, Wesseler J, Whelan A (2019) A comparison of the EU regulatory approach to directed mutagenesis with that of other jurisdictions, consequences for international trade and potential steps forward. New Phytol 222:1673–1684

    Article  Google Scholar 

  19. Fears R, ter Meulen V (2018) Assessing security implications of genome editing: emerging points from an international workshop. Front Bioeng Biotechnol 6:34. https://doi.org/10.3389/fbioe.2018.00034

    Article  PubMed  PubMed Central  Google Scholar 

  20. Feest P (2017) Chile: Los primeros pasos para el uso de CRISPR/Cas9 en salmónidos. https://www.salmonexpert.cl/article/chile-los-primeros-pasos-para-el-uso-de-crispr-cas9-en-salmonidos/. Accessed 17 August 2019

  21. Fleitas AL, Gallino JP, Señorale M, Bonnecarrere V, Vidal S (2019). Optimización de técnicas de edición genómica libres de DNA en Soja. In: X Encuentro Latinoamericano y del Caribe de Biotecnología Agropecuaria y XI Simposio REDBIO Argentina. Libro de Resúmenes. Montevideo, Uruguay. 12–15 November. https://doi.org/10.35676/INIA/ST.253

  22. Gatica-Arias A, Valdez-Melara M, Arrieta-Espinoza G, Albertazzi-Castro FJ, Madrigal-Pana J (2019) Consumer attitudes toward food crops developed by CRISPR/Cas9 in Costa Rica. Plant Cell Tissue Organ Culture. https://doi.org/10.1007/s11240-019-01647-x

    Article  Google Scholar 

  23. González J, Fort S, Gallino JP, Fleitas AL, Bonnecarrère V, Vidal S (2019a) Edición genómica en soja para mejoramiento de caracteres nutricionales. In: X Encuentro Latinoamericano y del Caribe de Biotecnología Agropecuaria y XI Simposio REDBIO Argentina. Libro de Resúmenes. Montevideo, Uruguay, 12–15 November. https://doi.org/10.35676/INIA/ST.253

  24. González MN, Massa GA, Andersson M, Storani L, Décima Oneto CA, Hofvander P, Feingold SE (2019b) Potato plants (Solanum tuberosum L.) with reduced tuber enzymatic browning developed by genome editing with the CRISPR/Cas9 system. In: X Encuentro Latinoamericano y del Caribe de Biotecnología Agropecuaria y XI Simposio REDBIO Argentina. Libro de Resúmenes. Montevideo, Uruguay, 12–15 November. https://doi.org/10.35676/INIA/ST.253

  25. Herman RA, Fedorova M, Storer NP (2019) Will following the regulatory script for GMOs promote public acceptance of gene-edited crops? Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2019.06.007

    Article  PubMed  Google Scholar 

  26. Huang S, Weigel D, Beachy RN, Li J (2016) A proposed regulatory framework for genome-edited crops. Nat Genet 48(2):109–111

    CAS  Article  Google Scholar 

  27. Hundleby P, Harwood W (2018) Impacts of the EU GMO regulatory framework for plant genome editing. Food Energy Secur 8:e00161. https://doi.org/10.1002/fes3.161

    Article  PubMed  PubMed Central  Google Scholar 

  28. ISAAA (2017) Global Status of Commercialized Biotech/GM Crops in 2017: Biotech crop adoption surges as economic benefits accumulate in 22 years. ISAAA Brief No. 53. ISAAA: Ithaca, NY. https://www.isaaa.org/resources/publications/briefs/53/download/isaaa-brief-53-2017.pdf. Accessed 11 July 2019

  29. Izquierdo I, de la Riva GA (2000) Plant biotechnology and food security in Latin America and the Caribbean. Electron J Biotechnol 3(1). https://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/v3n1-1/835

  30. Jin L, Wang J, Guan F, Zhang J, Yu S, Liu S, Xue Y, Li L, Wu S, Wang X, Yang Y, Abdelgaffar H, Jurat-Fuentes JL, Tabashnik BE, Wu Y (2018) Dominant point mutation in a tetraspanin gene associated with field-evolved resistance of cotton bollworm to transgenic Bt cotton. PNAS 115(46):11760–11765. https://doi.org/10.1073/pnas.1812138115

    CAS  Article  PubMed  Google Scholar 

  31. Kinderlerer J (2008) The Cartagena protocol on biosafety. Collect Biosaf Rev 4:12–65

    Google Scholar 

  32. Kleter G, Kuiper H, Kok E (2019) Gene-edited crops: towards a harmonized safety assessment. Trends Biotechnol 37(5):443–447

    CAS  Article  Google Scholar 

  33. Lassoued R, Hesseln H, Phillips PWB, Smyth SJ (2018a) Top plant breeding techniques for improving food security: an expert Delphi survey of the opportunities and challenges. Int J Agric Resour Gov Ecol 14(4):321–337

    Google Scholar 

  34. Lassoued R, Smyth SJ, Phillips PWB, Hesseln H (2018b) Regulatory uncertainty around new breeding techniques. Front Plant Sci 9:1291. https://doi.org/10.3389/fpls.2018.01291

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ledford H (2019) CRISPR conundrum: Strict European court ruling leaves food-testing labs without a plan. https://www.nature.com/articles/d41586-019-02162-x?utm_source=Nature+Briefing&utm_campaign=2fabe86eff-briefing-dy-20190723&utm_medium=email&utm_term=0_c9dfd39373-2fabe86eff-43587561. Accessed 17 July 2019.

  36. Lema M (2019) (2019) Regulatory aspects of gene editing in Argentina. Transgenic Res 28:147–150. https://doi.org/10.1007/s11248-019-00145-2

    CAS  Article  PubMed  Google Scholar 

  37. López E, Proaño K, Jadán M, Mihai R (2015) Callus tissue induction and analysis of GUS reporter gene expression in tomato (Solanum lycopersicum L.) transformed with Agrobacterium tumefaciens. Roman Biotechnol Lett 20(2):10205–10211

    Google Scholar 

  38. Mallapaty S (2019) Australian gene-editing rules adopt ‘middle ground’. https://www.nature.com/articles/d41586-019-01282-8. Accessed 17 July 2019

  39. McHughen A, Smyth S (2008) US regulatory system for genetically modified [genetically modified organism (GMO), rDNA or transgenic] crop cultivars. Plant Biotechnol J 6:2–12

    PubMed  Google Scholar 

  40. Miglani G (2017) Genome editing in crop improvement: present scenario. Crop Improv 31(4):453–559

    CAS  Article  Google Scholar 

  41. National Academies of Sciences, Engineering, and Medicine (2016) Genetically engineered crops: experiences and prospects. The National Academies Press, Washington, DC. https://doi.org/10.17226/23395

  42. Nkechi I (2019) African Union mulls harmonized biosafety system framework. https://allianceforscience.cornell.edu/blog/2019/07/african-union-mulls-harmonized-biosafety-system-framework/). Accessed 17 July 2019

  43. OECD (Organization for Economic Cooperation and Development) (2016) Report of the OECD workshop on environmental risk assessment of products derived from new plant breeding techniques. In: Directorate E (ed) Organization for economic cooperation and development, Paris

  44. Orozco P (2018) Argentina and Brazil merge law and science to regulate new breeding techniques. Cornell alliance for science. https://allianceforscience.cornell.edu/blog/2018/01/argentinaand-brazil-merge-law-and-science-to-regulate-new-breedingtechniques. Accessed July 16 2019

  45. Pardo-Hernández G (2018) Enfoque metodológico para productos vegetales desarrollados por nuevas técnica de fitomejoramiento. In: Genome editing seminar for biotechnology regulators in the Americas. Calí, Colombia, 4–5 April

  46. Plaza S. (2018) INTA y dos alimentos del futuro: “superpapas” y leche no alergénica. https://www.lacapitalmdp.com/inta-y-dos-alimentos-del-futuro-superpapas-y-leche-no-alergenica/. Accessed 17 August 2019

  47. Roca W, Espinoza C, Panta A (2004) Agricultural applications of biotechnology and the potential for biodiversity valorization in Latin America and the Caribbean. AgBioForum, 7(1, 2): 13–22

  48. Rosado A, Craig W (2017) Biosafety regulatory systems overseeing the use of genetically modified organisms in the Latin America and Caribbean region. AgBioForum 20(2):120–132

    Google Scholar 

  49. Sánchez FJ, Arciniegas JP, Brand A, Vacca O, Tohme J, Becerra LA, Chavarriaga P (2019) edición de genomas en manihot esculenta Crantz para la producción de plantas waxy y para la resistencia a la bacteriosis vascular producida por Xanthomonas axonopodis pv. Manihotis. In: X Encuentro Latinoamericano y del Caribe de Biotecnología Agropecuaria y XI Simposio REDBIO Argentina. Libro de Resúmenes. Montevideo, Uruguay, 12–15 November. https://doi.org/10.35676/INIA/ST.253

  50. Santos E, Pacheco R, Villao L, Galarza L, Ochoa D, Jordán C, Flores J (2016a) Promoter analysis in Banana. In: Mohandas S, Ravishankar KV (eds) Banana: genomics and transgenic developments for crop improvement. Springer, New York, pp 157–179

    Google Scholar 

  51. Santos E, Sánchez E, Hidalgo L, Chávez T, Villao L, Pacheco R, Flores J, Korneva S, Navarrete O (2016b) Advances in Banana Transformation through Agrobacterium tumefaciens in Ecuador: progress, challenges and perspectives. Acta Hortic 1114:197–202. https://doi.org/10.17660/ActaHortic.2016.1114.27

  52. Schuttelaar P (2015) The regulatory status of new breeding techniques in countries outside the European Union. Version: June 2015

  53. Seyran E, Craig W (2018) New breeding techniques and their possible regulation. AgBioForum 21(1):1–12

    Google Scholar 

  54. Sierra-Robles S, Moreno-Ramirez JL, Chavarriaga-Aguirre P, Tohme J (2019) Avances en la edición de genomas libre de ADN para variedades colombianas de Theobroma cacao. In: X Encuentro Latinoamericano y del Caribe de Biotecnología Agropecuaria y XI Simposio REDBIO Argentina. Libro de Resúmenes. Montevideo, Uruguay, 12–15 November. https://doi.org/10.35676/INIA/ST.253

  55. Singh V, Singh S, Black H, Boyett V, Basu S, Gealy D, Gbur E, Pereira A, Scott RC, Caicedo A, Burgos NR (2017) Introgression of ClearfieldTM rice crop traits into weedy red rice outcrosses. Field Crop Res 207:13–23. https://doi.org/10.1016/j.fcr.2017.03.004

    Article  Google Scholar 

  56. Smyth SJ (2019) Global status of the regulation of genome editing technologies. CAB Reviews 14, No. 021. https://www.cabi.org/cabreviews/review/20193130669

  57. Soto G (2019) Alfalfa improvement through the application of NBTS. In: X Encuentro Latinoamericano y del Caribe de Biotecnología Agropecuaria y XI Simposio REDBIO Argentina. Libro de Resúmenes. Montevideo, Uruguay. 12–15 November. https://doi.org/10.35676/INIA/ST.253

  58. Sprink T, Eriksson D, Schiemann J, Hartung F (2016) Regulatory hurdles for genome editing: process- vs. product-based approaches in different regulatory contexts. Plant Cell Rep 35:1493–1506. https://doi.org/10.1007/s00299-016-1990-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Tabashnik B, Carrière Y (2017) Surge in insect resistance to transgenic crops and prospects for sustainability. Nat Biotechnol 35(10):926–935

    CAS  Article  Google Scholar 

  60. Trigo EJ, Henry G, Sanders J, Schurr U, Ingelbrecht I, Revel C, Santana C, Rocha P (2013) Towards bioeconomy development in Latin America and the Caribbean. Bioeconomy Working Paper. Cali, Colombia: ALCUE-KBBE. https://agritrop.cirad.fr/567934/1/document_567934.pdf. Accessed 15 July 2019

  61. Valdés S, Marín D, Delgado G, Lorieux M, Álvarez M, Tohme J, Chavarriaga P (2019) CRISPR/Cas9: acelerando el mejoramiento del arroz. In: X Encuentro Latinoamericano y del Caribe de Biotecnología Agropecuaria y XI Simposio REDBIO Argentina. Libro de Resúmenes. Montevideo, Uruguay, 12–15 November. https://doi.org/10.35676/INIA/ST.253

  62. Villao L, Sánchez E, Romero C, Galarza L, Flores J, Santos E (2019) Activity characterization of the plantain promoter from the heavy metal-associated isoprenylated plant gene (MabHIPP) using the luciferase reporter gene. Plant Gene 19:100187. https://doi.org/10.1016/j.plgene.2019.100187

    CAS  Article  Google Scholar 

  63. Wesseler J, Politiek H, David Z (2019) The economics of regulating new plant breeding technologies—implications for the bioeconomy illustrated by a survey among Dutch plant breeders. Front Plant Sci 10:1597. https://doi.org/10.3389/fpls.2019.01597

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wolt J (2019) (2019) Current risk assessment approaches for environmental and food and feed safety assessment. Transgenic Res 28:111–117. https://doi.org/10.1007/s11248-019-00140-7

    CAS  Article  PubMed  Google Scholar 

  65. Yin K, Gao C, Qiu JL (2017) Progress and prospects in plant genome editing. Nat Plants 3(8):17107

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was financed by the “Espacio de Estudios Avanzados de la Universidad de Costa Rica” (Space for Advanced Studies at the University of Costa Rica) (UCREA; Project No. 801-B7-294). Dr. Andrés Gatica-Arias would like to thank Agustina Whelan (Biotechnology Directorate, Ministry of AgroIndustry, Argentina) and Dr. Efrén Santos-Ordoñez (ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Ecuador) for reviewing the respective country descriptions. Dr. Pedro Rocha (Inter-American Institute for Cooperation on Agriculture (IICA), San José, Costa Rica) and Dr. Luiz Filipe Protasio Pereira (Instituto Agronómico do Paraná (IAPAR) and Empresa Brasileira de Pesquisa Agropecuária (Embrapa Café), Brazil) for the for proofreading and constructive recommendations on this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrés Gatica-Arias.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Goetz Hensel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gatica-Arias, A. The regulatory current status of plant breeding technologies in some Latin American and the Caribbean countries. Plant Cell Tiss Organ Cult 141, 229–242 (2020). https://doi.org/10.1007/s11240-020-01799-1

Download citation

Keywords

  • Genome editing
  • New plant breeding technologies (NPBT)
  • Biosafety
  • Agricultural biotechnology