Next Article in Journal
Information Theory for Correlation Analysis and Estimation of Uncertainty Reduction in Maps and Models
Next Article in Special Issue
Deepening the Conception of Functional Information in the Description of Zoonotic Infectious Diseases
Previous Article in Journal
General Formula for the Efficiency of Quantum-Mechanical Analog of the Carnot Engine
Previous Article in Special Issue
Is Encephalopathy a Mechanism to Renew Sulfate in Autism?
Open AccessReview

Glyphosate’s Suppression of Cytochrome P450 Enzymes and Amino Acid Biosynthesis by the Gut Microbiome: Pathways to Modern Diseases

1
Independent Scientist and Consultant, Deerfield, NH 03037, USA
2
Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA
*
Author to whom correspondence should be addressed.
Note added by the Publisher: The editors of the journal have been alerted to concerns over potential bias in opinions and bias in the choice of citation sources used in this article. We note that the authors stand by the content as published. Since the nature of the claims against the paper concern speculation and opinion, and not fraud or academic misconduct, the editors would like to issue an Expression of Concern to make readers aware that the approach to collating literature citations for this article was likely not systematic and may not reflect the spectrum of opinions on the issues covered by the article. Please refer to our policy regarding possibly controversial articles.
Entropy 2013, 15(4), 1416-1463; https://doi.org/10.3390/e15041416
Received: 15 January 2013 / Revised: 10 April 2013 / Accepted: 10 April 2013 / Published: 18 April 2013
(This article belongs to the Special Issue Biosemiotic Entropy: Disorder, Disease, and Mortality)
Glyphosate, the active ingredient in Roundup®, is the most popular herbicide used worldwide. The industry asserts it is minimally toxic to humans, but here we argue otherwise. Residues are found in the main foods of the Western diet, comprised primarily of sugar, corn, soy and wheat. Glyphosate's inhibition of cytochrome P450 (CYP) enzymes is an overlooked component of its toxicity to mammals. CYP enzymes play crucial roles in biology, one of which is to detoxify xenobiotics. Thus, glyphosate enhances the damaging effects of other food borne chemical residues and environmental toxins. Negative impact on the body is insidious and manifests slowly over time as inflammation damages cellular systems throughout the body. Here, we show how interference with CYP enzymes acts synergistically with disruption of the biosynthesis of aromatic amino acids by gut bacteria, as well as impairment in serum sulfate transport. Consequences are most of the diseases and conditions associated with a Western diet, which include gastrointestinal disorders, obesity, diabetes, heart disease, depression, autism, infertility, cancer and Alzheimer’s disease. We explain the documented effects of glyphosate and its ability to induce disease, and we show that glyphosate is the “textbook example” of exogenous semiotic entropy: the disruption of homeostasis by environmental toxins. View Full-Text
Keywords: glyphosate; cytochrome P450; eNOS; obesity; cardiovascular disease; cancer; colitis; shikimate pathway; gut microbiome; tryptophan; tyrosine; phenylalanine; methionine; serotonin; Alzheimer’s disease; Parkinson’s disease; autism; depression glyphosate; cytochrome P450; eNOS; obesity; cardiovascular disease; cancer; colitis; shikimate pathway; gut microbiome; tryptophan; tyrosine; phenylalanine; methionine; serotonin; Alzheimer’s disease; Parkinson’s disease; autism; depression
Show Figures

Figure 1

MDPI and ACS Style

Samsel, A.; Seneff, S. Glyphosate’s Suppression of Cytochrome P450 Enzymes and Amino Acid Biosynthesis by the Gut Microbiome: Pathways to Modern Diseases. Entropy 2013, 15, 1416-1463.

Show more citation formats Show less citations formats

Article Access Map by Country/Region

1
Only visits after 24 November 2015 are recorded.
Search more from Scilit
 
Search
Back to TopTop