Hydrothermal vents and the origin of life

Key Points

  • Since their discovery, hydrothermal vents have been relevant to concepts that surround the origin of life. At the simplest level, there are two kinds of hydrothermal vents: the hot (approximately 350°C) black smoker type, the chemistry of which is driven by the magma-chamber that resides below ocean-floor spreading zones, and the cooler (approximately 50–90°C) Lost City type, the chemistry of which is driven not by magma, but by a process called serpentinization.

  • Serpentinization is a H2-producing geochemical reaction that has been operation in hydrothermal systems for as long as there has been water on the Earth. Its reducing power is sufficient to generate substantial amounts of abiogenic CH4 and short hydrocarbons in the effluent of some modern hydrothermal vents.

  • In the study of the origin of life, major unresolved issues concern the source of sustained chemical energy and the source of reduced carbon compounds. The CO2-reducing geochemistry of modern hydrothermal vents provides a model for our understanding of how such processes might have been possible at the dawn of biochemistry.

  • Methanogens and acetogens satisfy their carbon needs through the acetyl-coenzyme A pathway, an energy-releasing pathway of CO2 fixation, if given sufficient environmental H2 and CO2. The authors consider the idea that the CH4-producing and acetate-producing geochemistry of hydrothermal vents is the abiogenic precursor of modern microbial CH4 and acetate production.

  • This suggests that the evolutionary starting point of microbial metabolism might have been an energy-releasing geochemical process in which CO2 served as the acceptor for electrons that stemmed from H2 generated by serpentinization. The naturally chemiosmotic nature of alkaline hydrothermal systems, such as Lost City, might be important to the origin of life issue, but in a somewhat unexpected way that, in turn, helps to explain why chemiosmotic coupling through ATPases is universal throughout the microbial world.

Abstract

Submarine hydrothermal vents are geochemically reactive habitats that harbour rich microbial communities. There are striking parallels between the chemistry of the H2–CO2 redox couple that is present in hydrothermal systems and the core energy metabolic reactions of some modern prokaryotic autotrophs. The biochemistry of these autotrophs might, in turn, harbour clues about the kinds of reactions that initiated the chemistry of life. Hydrothermal vents thus unite microbiology and geology to breathe new life into research into one of biology's most important questions — what is the origin of life?

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Global distribution of known hydrothermal vents.
Figure 2: Hydrothermal vents.
Figure 3: Chemical and biochemical reactions.

References

  1. 1

    Corliss, J. B. et al. Submarine thermal springs on the Galapagos rift. Science 203, 1073–1083 (1979).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2

    Spiess, F. N. et al. East Pacific rise: hot springs and geophysical experiments. Science 207, 1421–1433 (1980).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3

    Baross, J. A. & Hoffman, S. E. Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Orig. Life Evol. Biosph. 15, 327–345 (1985).

    CAS  Article  Google Scholar 

  4. 4

    Kelley, D. S. et al. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N. Nature 412, 145–149 (2001). Reports the discovery of the LCHF and important differences of LCHF geochemistry compared with black smokers.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5

    Kelley, D. S. et al. A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science 307, 1428–1434 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6

    de Wit, M. J. Early Archean processes: evidence from the South African Kaapvaal craton and its greenstone belts. Geologie en Mijinbouw 76, 369–371 (1998).

    Article  Google Scholar 

  7. 7

    Baker, E. T. & German, C. R. in Mid-Ocean Ridges: Hydrothermal Interactions between the Lithosphere and Oceans (eds German, C., Lin, J. & Parson, L. M.) 245–266 (American Geophysical Union, Washington DC, 2004).

    Google Scholar 

  8. 8

    Hammond, S. R. Offset caldera and crater collapse on Juan de Fuca ridge-flank volcanoes. Bull. Volcanol. 58, 617–627 (1997).

    Article  Google Scholar 

  9. 9

    Delaney, J. R. et al. The quantum event of oceanic crustal accretion: impacts of diking at mid-ocean ridges. Science 281, 222–230 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10

    Embley, R. W. & Lupton, J. E. in The Subseafloor Biosphere at Mid-Ocean Ridges (eds Wilcock, W. S. D., DeLong, E. F., Kelley, D. S., Baross, J. A. & Cary, S. C.) 75–97 (American Geophysical Union, Washington DC, 2004).

    Google Scholar 

  11. 11

    Karson, J. A., Früh-Green, G. L., Kelley, D. S., Williams, E. A., Yoerger, D. R. & Jakuba, M. Detachment shear zone of the Atlantis Massif core complex, Mid-Atlantic ridge, 30°N. Geochem. Geophys. Geosyst. 7, Q06016 (2006).

    Google Scholar 

  12. 12

    Kelley, D. S., Baross, J. A. & Delaney, J. R. Volcanoes, fluids, and life at mid-ocean ridge spreading centers. Annu. Rev. Earth Planet Sci. 30, 385–491 (2002).

    CAS  Article  Google Scholar 

  13. 13

    Von Damm, K. L. et al. Extraordinary phase separation and segregation in vent fluids from the southern East Pacific Rise. Earth Planet Sci. Lett. 206, 265–378 (2003).

    Article  Google Scholar 

  14. 14

    Von Damm, K. L. in Physical, Chemical, Biological, and Geological Interactions within Seafloor Hydrothermal Systems (eds Humphris, S., Zierenberg, R., Mullineau, L. & Thomson R.) 222–247 (American Geophysical Union, Washington DC, 1995).

    Google Scholar 

  15. 15

    Kashefi, K. & Lovley, D. R. Extending the upper temperature limit for life. Science 301, 934 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16

    Little, C. T. S., Cann, J. R., Herrington, R. J. & Morisseau, M. Late Cretaceous hydrothermal vent communities from the Troodos Ophiolite, Cyprus. Geology 27, 1027–1030 (1999).

    Article  Google Scholar 

  17. 17

    Rasmussen, B. Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit. Nature 405, 676–679 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18

    Ludwig, K. A., Kelley, D. S., Butterfield, D. A., Nelson, B. K. & Früh-Green, G. Formation and evolution of carbonate chimneys at the Lost City Hydrothermal Field. Geochim. Cosmochim. Acta 70, 3625–3645 (2006).

    CAS  Article  Google Scholar 

  19. 19

    Früh-Green, G. L. et al. 30,000 years of hydrothermal activity at the Lost City Vent Field. Science 301, 495–498 (2003).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  20. 20

    Proskurowski, G., Lilley, M. D., Kelley, D. S. & Olson, E. J. Low temperature volatile production at the Lost City Hydrothermal Field, evidence from a hydrogen stable isotope geothermometer. Chem. Geol. 229, 331–343 (2006).

    CAS  Article  Google Scholar 

  21. 21

    Blackman, D. K. et al. Geology of the Atlantis massif, (Mid-Atlantic Ridge 30°N): implications for the evolution of an ultramafic oceanic core complex. Mar. Geophys. Res. 23, 443–469 (2002).

    Article  Google Scholar 

  22. 22

    Proskurowski, G. et al. Abiogenic hydrocarbon production at lost city hydrothermal field. Science 319, 604–607 (2008). Reports isotopic evidence which indicated that CH 4 and volatile hydrocarbon production at Lost City is a geochemical, not a biological, process. This study therefore implicates serpentinization in abiogenic carbon reduction, which could be highly relevant in an origin-of-life context.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23

    Ludwig, K. A., Kelley, D. S., Shen, C., Cheng, H. & Edwards, R L. U/Th geochronology of carbonate chimneys at the Lost City hydrothermal field. Eos Trans. AGU 86, V51B–1487 (2005).

  24. 24

    Bach, W., Banerjee, N. R., Dick, H. J. B. & Baker, E. T. Discovery of ancient and active hydrothermal systems along the ultra-slow spreading Southwest Indian Ridge 10°–16°E. Geochem. Geophys. Geosystems 3, 1044 (2002).

    Article  Google Scholar 

  25. 25

    Dick, H. J. B., Lin, J. & Schouten, H. An ultraslow-spreading class of ocean ridge. Nature 426, 405–412 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26

    Edmonds, H. N. et al. Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic. Nature 421, 252–256 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27

    Schrenk, M. O., Kelley, D. S., Bolton, S. & Baross, J. A. Low archaeal diversity linked to sub-seafloor geochemical processes at the Lost City Hydrothermal Field, Mid-Atlantic Ridge. Environ. Microbiol. 6, 1086–1095 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28

    Brazelton, W. J., Schrenk, M. O., Kelley, D. S. & Baross, J. A. Methane and sulfur metabolizing microbial communities dominate in the Lost City hydrothermal vent ecosystem. Appl. Environ. Microbiol. 72, 6257–6270 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29

    Orphan, V. J., House, C. H., Hinrichs, K. U., McKeegan, K. D. & DeLong, E. F. Direct phylogenetic and isotopic evidence for multiple groups of Archaea involved in the anaerobic oxidation of methane. Geochim. Cosmochim. Acta 66, A571 (2002).

    Google Scholar 

  30. 30

    Teske, A. et al. Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl. Environ. Microbiol. 68, 1994–2007 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31

    Aloisi, G. I. et al. CH4-consuming microorganisms and the formation of carbonate crusts at cold seeps. Earth Planet. Sci. Lett. 203, 195–203 (2002).

    CAS  Article  Google Scholar 

  32. 32

    Boetius, A. et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33

    Michaelis, W. et al. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science 297, 1013–1015 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34

    Orphan, V. J. et al. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl. Environ. Microbiol. 67, 1922–1934 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35

    Thomsen, T. R., Finster, K. & Ramsing, N. B. Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment. Appl. Environ. Microbiol. 67, 1646–1656 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36

    Hallam, S. J. et al. Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305, 1457–1462 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37

    Meyerdierks, A. et al. Insights into the genomes of archaea mediating the anaerobic oxidation of methane. Environ. Microbiol. 7, 1937–1951 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38

    Raghoebarsing, A. et al. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440, 918–921 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39

    Girguis, P. R., Cozen, A. E. & DeLong E. F. Growth and population dynamics of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a continuous-flow bioreactor. Appl. Environ. Microbiol. 71, 3725–3733 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40

    Hoehler, T. M., Alperin, M. J., Albert, D. B. & Martens, C. S. Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen–sulfate reducer consortium. Global Biogeochem. Cycles 8, 451–463 (1994).

    CAS  Article  Google Scholar 

  41. 41

    Nauhaus, K., Boetius, A., Kruger, M. & Widdel, F. In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ. Microbiol. 4, 296–305 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42

    Nauhaus, K., Treude, T., Boetius, A. & Krüger, M. Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. Environ. Microbiol. 7, 98–106 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43

    Schouten, S., Wakeham, S. G., Hopmans, E. C. & Damste, J. S. S. Biogeochemical evidence that thermophilic archaea mediate the anaerobic oxidation of methane. Appl. Environ. Microbiol. 69, 1680–1686 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44

    Kallmeyer, J. & Boetius, A. Effects of temperature and pressure on sulfate reduction and anaerobic oxidation of methane in hydrothermal sediments of Guaymas Basin. Appl. Environ. Microbiol. 70, 1231–1233 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45

    Boetius, A. Lost City life. Science 307, 1420–1422 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46

    Moran, J. J. et al. Methyl sulfides as intermediates in the anaerobic oxidation of methane. Environ. Microbiol. 10, 162–173 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Bada, J. L. & Lazcano, A. Some like it hot, but not the first biomolecules. Science 296, 1982–1983 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48

    Orgel, L. E. The implausibility of metabolic cycles on the prebiotic Earth. PLoS Biol. 6, e18 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. 49

    Fuchs, G. CO2 fixation in acetogenic bacteria: variations on a theme. FEMS Microbiol. Rev. 39, 181–213 (1986).

    CAS  Article  Google Scholar 

  50. 50

    Fuchs, G. & Stupperich, E. in Evolution of Prokaryotes (eds Schleifer, K. H. & Stackebrandt, E.) 235–251 (Academic, London, 1985).

    Google Scholar 

  51. 51

    Berg, I. A., Kockelkorn, D., Buckel, W. & Fuchs, G. A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science 318, 1782–1786 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52

    Thauer, R. K. A fifth pathway of carbon fixation. Science 318, 1732–1733 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53

    Thauer, R. K., Kaster, A. K., Seedorf, H., Buckel, W. & Hedderich R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nature Rev. Microbiol. 6, 579–591 (2008). Provides the most recent summary of methanogen bioenergetics and explains important and newly recognized differences in the energy metabolism of methanogens that possess cytochromes compared with those that lack cytochromes.

    CAS  Article  Google Scholar 

  54. 54

    Müller, V. Energy conservation in acetogenic bacteria. Appl. Environ. Microbiol. 69, 6345–6353 (2003).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  55. 55

    Maden, B. E. H. Tetrahydrofolate and tetrahydromethanopterin compared: functionally distinct carriers in C1 metabolism. Biochem. J. 350, 609–629 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56

    Rother, M. & Metcalf, W. W. Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: an unusual way of life for a methanogenic archaeon. Proc. Natl Acad. Sci. USA 101, 16929–16934 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57

    Shock, E. L. Geochemical constraints on the origin of organic compounds in hydrothermal systems. Orig. Life Evol. Biosph. 20, 331–367 (1990).

    CAS  Article  Google Scholar 

  58. 58

    Shock, E. L., McCollom, T. M. & Schulte, M. D. in Thermophiles: The Keys to Molecular Evolution and The Origin of Life? (eds Wiegel, J. & Adams, M. W. W.) 59–76 (Taylor and Francis, London, 1998).

    Google Scholar 

  59. 59

    McCollom, T. M. & Seewald, J. S. Experimental constraints on the hydrothermal reactivity of organic acids and acid anions: I. Formic acid and formate. Geochim. Cosmochim. Acta 67, 3625–3644 (2003).

    CAS  Article  Google Scholar 

  60. 60

    McCollom, T. M. & Seewald J. S. Abiotic synthesis of organic compounds in deep-sea hydrothermal environments. Chem. Rev. 107, 382–401 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61

    Lang, S. Q., Butterfield, D., Hedges, J. & Lilley, M. Production of isotopically heavy dissolved organic carbon in the Lost City Hydrothermal Vent Field. Eos Trans. AGU 86, V43C–06 (2005).

    Google Scholar 

  62. 62

    Lang, S. Q., Butterfield, D. & Lilley, M. Organic geochemistry of Lost City Hydrothermal fluids. InterRidge Theoretical Institute 'Biogeochemical interaction at deep-sea vents' [online], (2007).

    Google Scholar 

  63. 63

    Martin, W. & Russell, M. J. On the origin of biochemistry at an alkaline hydrothermal vent. Philos. Trans. R. Soc. Lond. B 367, 1187–1925 (2007).

    Google Scholar 

  64. 64

    Russell, M. J. & Hall, A. J. The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J. Geol. Soc. London 154, 377–402 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  65. 65

    Cody, G. D. Transition metal sulfides and the origin of metabolism. Annu. Rev. Earth Planet. Sci. 32, 569–599 (2004).

    CAS  Article  Google Scholar 

  66. 66

    Heinen, W. & Lauwers, A. M. Organic sulfur compounds resulting from the interaction of iron sulfide, hydrogen sulfide and carbon dioxide in an anaerobic aqueous environment. Orig. Life Evol. Biosph. 26, 131–150 (1996). Detected Fe(II)- and hydrogen sulphide-dependent CO 2 reduction of methyl sulphide and other compounds under mild conditions as might have been encountered in Hadean hydrothermal vents.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. 67

    Huber, C. & Wächtershäuser, G. Activated acetic acid by carbon fixation on (Fe, Ni)S under primordial conditions. Science 276, 245–247 (1997). Detected Fe(II)- and Ni(II)-dependent synthesis of acetate and the thioester acetyl methyl sulphide from CO and methyl sulfide under conditions as might have been encountered in Hadean hydrothermal vents.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. 68

    Wächtershäuser, G. From volcanic origins of chemoautotrophic life to Bacteria, Archaea and Eukarya. Philos. Trans. R. Soc. Lond. B 361, 1787–1806 (2006).

    Article  CAS  Google Scholar 

  69. 69

    Ferry, J. G. & House, C. H. The step-wise evolution of early life driven by energy conservation. Mol. Biol. Evol. 23, 1286–1292 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. 70

    Leman, L., Orgel, L. & Ghadiri, M. R. Carbonyl sulfide-mediated prebiotic formation of peptides. Science 306, 283–286 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71

    Russell, M. J., Daniel, R. M., Hall, A. J. & Sherringham, J. A hydrothermally precipitated catalytic iron sulphide membrane as a first step toward life. J. Mol. Evol. 39, 231–243 (1994).

    CAS  Article  Google Scholar 

  72. 72

    Amend, J. P. & Shock, E. L. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol. Rev. 25, 175–243 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73

    Mitchell, P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191, 144–148 (1961).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74

    Berry, S. The chemical basis of membrane bioenergetics. J. Mol. Evol. 54, 595–613 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. 75

    Schäfer, G., Engelhard, M. & Müller, V. Bioenergetics of the Archaea. Microbiol. Mol. Biol. Rev. 63, 570–620 (1999).

    PubMed  PubMed Central  Google Scholar 

  76. 76

    Baymann, F. et al. The redox protein construction kit: pre-last universal common ancestor evolution of energy conserving enzymes. Philos. Trans. R. Soc. Lond. B 358, 267–274 (2003).

    CAS  Article  Google Scholar 

  77. 77

    Junge, W. ATP synthase and other motor proteins. Proc. Natl Acad. Sci. USA 96, 4735–4737 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. 78

    Murata, T., Yamato, I., Kakinuma, Y., Leslie, A. G. W. & Walker, J. E. Structure of the rotor of the V-type Na+-ATPase from Enterococcus hirae. Science 308, 654–659 (2005).

    CAS  Article  Google Scholar 

  79. 79

    Kaesler, B. & Schönheit, P. The role of sodium ions in methanogenesis. Formaldehyde oxidation to CO2 and 2 H2 in methanogenic bacteria is coupled with primary electrogenic Na+ translocation at a stoichiometry of 2–3 Na+/CO2 . Eur. J. Biochem. 184, 223–232 (1989).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  80. 80

    Baaske, P., Weinert, F. M., Duhr, S., Lemke, K. H., Russell, M. J. & Braun, D. Extreme accumulation of nucleotides in simulated hydrothermal pore systems. Proc. Natl Acad. Sci. USA 104, 9346–9351 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. 81

    Braun, D. & Libchaber, A. Thermal force approach to molecular evolution. Phys. Biol. 1, P1–P8 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  82. 82

    Koonin, E. V. An RNA-making reactor for the origin of life. Proc. Natl Acad. Sci. USA 104, 9105–9106 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. 83

    Joyce, G. F. The antiquity of RNA-based evolution. Nature 418, 214–221 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  84. 84

    Oparin, A. I. The Origin of Life (Dover, New York, 1952).

    Google Scholar 

  85. 85

    Haldane, J. B. S. The origin of life. Rationalist Annual 148, 3–10 (1929).

    Google Scholar 

  86. 86

    Miller, S. L. A production of amino acids under possible primitive Earth conditions. Science 117, 528–529 (1953).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. 87

    Bada, J. L. How life began on Earth: a status report. Earth Planet. Sci. Lett. 226, 1–15 (2004).

    CAS  Article  Google Scholar 

  88. 88

    Orgel, L. E. Prebiotic chemistry and the origin of the RNA World. Crit. Rev. Biochem. Mol. Biol. 39, 99–123 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  89. 89

    de Duve, C. Vital Dust: Life as a Cosmic Imperative (Basic Books, New York, 1995).

    Google Scholar 

  90. 90

    Schulte, M., Blake, D., Hoehler, T. & McCollom, T. M. Serpentinization and its implications for life on the early Earth and Mars. Astrobiology 6, 364–376 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  91. 91

    Bach, W. et al. Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274). Geophys. Res. Lett. 33, L13306 (2006).

    Article  CAS  Google Scholar 

  92. 92

    Sleep, N. H., Meibom, A., Fridriksson, T., Coleman, R. G. & Bird, D. K. H2-rich fluids from serpentinization: geochemical and biotic implications. Proc. Natl Acad. Sci. USA 101, 12818–12823 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. 93

    Fisher, A. T. Marine hydrogeology: recent accomplishments and future opportunities. Hydrogeol. J. 13, 69–97 (2005).

    Article  Google Scholar 

  94. 94

    Cech, T. R. A model for the RNA-catalyzed replication of RNA. Proc. Natl Acad. Sci. USA 83, 4360–4363 (1986).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  95. 95

    Gilbert, W. The RNA world. Nature 319, 618 (1986).

    Article  Google Scholar 

  96. 96

    White, H. B. Coenzymes as fossils of an earlier metabolic state. J. Mol. Evol. 7, 101–104 (1976).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. 97

    Bartoschek, S., Vorholt, J. A., Thauer. R. K., Geierstanger, B. H. & Griesinger, C. N-carboxymethanofuran (carbamate) formation from methanofuran and CO2 in methanogenic archaea. Thermodynamics and kinetics of the spontaneous reaction. Eur. J. Biochem. 267, 3130–3138 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  98. 98

    Morowitz, H. J., Kostelnik, J. D., Yang, J. & Cody, G. D. The origin of intermediary metabolism. Proc. Natl Acad. Sci. USA 97, 7704–7708 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  99. 99

    Schrenk, M. O., Kelley, D. S., Delaney, J. R. & Baross, J. A. Incidence and diversity of microorganisms within the walls of an active deep-sea sulfide chimney. Appl. Environ. Microbiol. 69, 3580–3592 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. 100

    Pagé, A., Tivey, M. K., Stakes, D. S. & Reysenbach, A.-L. Temporal and spatial archaeal colonization of hydrothermal vent deposits. Environ. Microbiol. 10, 874–884 (2008).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  101. 101

    Seewald, J. S., Zolotov, M. Y. & McCollom, T. M. Experimental investigation of single carbon compounds under hydrothermal conditions. Geochim. Cosmochim. Acta 70, 446–460 (2006). Provides important insights into the chemical equilibria and speciation of C 1 intermediates in the reaction of H 2 and CO 2 to CH 4 under conditions that simulate submarine hydrothermal vents. This study showed that formate and CO are readily generated from CO 2 and H 2 and revealed kinetic barriers to CH 4 formation.

    CAS  Article  Google Scholar 

  102. 102

    Imkamp, F., Biegel, E., Jayamani, E., Buckel, W. & Müller, V. Dissection of the caffeate respiratory chain in the acetogen Acetobacterium woodii: identification of an Rnf-type NADH dehydrogenase as a potential coupling site. J. Bacteriol. 189, 8145–8153 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. 103

    Edwards, K. J., Bach, W. & McColluom, T. M. Geomicrobiology in oceanography: microbe–mineral interactions at and below the seafloor. Trends Microbiol. 13, 449–456 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  104. 104

    Kashefi, K., Holmes, D. E., Lovley, D. R. & Tor, J. M. in The Subseafloor Biosphere at Mid-Ocean Ridges (eds Wilcock, W. S. D., DeLong, E. F., Kelley, D. S., Baross, J. A. & Cary, S. C.) 199–212 (American Geophysical Union, Washington DC, 2004).

    Google Scholar 

  105. 105

    Campbell, B. J. & Engel, A. S. The versatile e-proteobacteria: key players in sulphidic habitats. Nature Rev. Microbiol. 4, 458–468 (2006).

    CAS  Article  Google Scholar 

  106. 106

    Vargas, M., Kashefi, K., Blunt-Harris, E. L. & Lovley, D. R. Microbiological evidence for Fe(III) reduction on early Earth. Nature 395, 65–67 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. F. Allen, N. Lane and C. Schmidt for comments. M.J.R. is supported by the Jet Propulsion Laboratory, California Institute of Technology, through a contract from the National Aeronautics and Space Administration. D.K. and J.B. are supported by a grant from the National Science Foundation (grant number OCE-0137206) and a grant from the National Oceanic and Atmospheric Administration Office of Exploration. J.B. received additional support from the NASA Astrobiology Institute through the Cornegie Geophysical Institute. W.M. is supported, in part, by a Julius-von-Haast Fellowship from the government of New Zealand and by the Deutsche Forschungsgemeinschaft.

Author information

Affiliations

Authors

Corresponding author

Correspondence to William Martin.

Supplementary information

Glossary

Consortia

Two or more different microorganisms that associate during growth to form characteristically ordered structures.

Stable isotope study

The use or analysis of stable isotopes, such as 2H, 13C or 15N, that do not undergo radioactive decay. Isotope discrimination properties of an enzymatically catalysed process can produce characteristic isotope ratios, for example 13C or 12C, that differ from those generated by various non-enzymatic processes. This provides insights into the partitioning of elements during microbial metabolism, and in geochemistry, can provide insights into the biological and geological source of substances such as CH4.

Chemiosmotic coupling

The coupling of endergonic and exergonic reactions through a proton motive force. Chemiosmotic coupling results in the conservation of chemical energy. In its most familiar form, chemiosmotic coupling entails the pumping of protons from the inside of the cell to the outside of the cell as electrons are passed from a donor to an acceptor through an electron transport chain in the prokaryotic plasma membrane. This generates a pH and electrical-potential gradient across the plasma membrane known as the proton motive force. The proton motif force represents electrochemical energy that can be harnessed in various ways, but the best-known of these involves ATPases, also called coupling factors, which synthesize ATP from ADP and inorganic phosphate as protons pass through them to re-enter the cytoplasm.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Martin, W., Baross, J., Kelley, D. et al. Hydrothermal vents and the origin of life. Nat Rev Microbiol 6, 805–814 (2008). https://doi.org/10.1038/nrmicro1991

Download citation

Further reading