A mechanical metamaterial made from a DNA hydrogel

Abstract

Metamaterials are artificial substances that are structurally engineered to have properties not typically found in nature. To date, almost all metamaterials have been made from inorganic materials such as silicon and copper1,2, which have unusual electromagnetic or acoustic properties1,2,3,4,5 that allow them to be used, for example, as invisible cloaks6,7,8,9, superlenses10,11,12 or super absorbers for sound13. Here, we show that metamaterials with unusual mechanical properties can be prepared using DNA as a building block. We used a polymerase enzyme to elongate DNA chains and weave them non-covalently into a hydrogel. The resulting material, which we term a meta-hydrogel, has liquid-like properties when taken out of water and solid-like properties when in water. Moreover, upon the addition of water, and after complete deformation, the hydrogel can be made to return to its original shape. The meta-hydrogel has a hierarchical internal structure and, as an example of its potential applications, we use it to create an electric circuit that uses water as a switch.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic diagram of the stepwise approach for DNA hydrogel synthesis.
Figure 2: Characterization of the R4M16 DNA hydrogel.
Figure 3: Liquid- and solid-like properties of the R4M16 hydrogel.
Figure 4: Morphology of the DNA hydrogel.
Figure 5: Electric circuit switch formed using the liquid- and solid-like properties of DNA meta-hydrogel.

References

  1. 1

    Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).

    CAS  Article  Google Scholar 

  2. 2

    Liu, Y. M. & Zhang, X. Metamaterials: a new frontier of science and technology. Chem. Soc. Rev. 40, 2494–2507 (2011).

    CAS  Article  Google Scholar 

  3. 3

    Pendry, J. B., Holden, A. J., Stewart, W. J. & Youngs, I. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773–4776 (1996).

    CAS  Article  Google Scholar 

  4. 4

    Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C. & Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000).

    CAS  Article  Google Scholar 

  5. 5

    Smith, D. R., Pendry, J. B. & Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 305, 788–792 (2004).

    CAS  Article  Google Scholar 

  6. 6

    Alu, A. & Engheta, N. Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E 72, 016623 (2005).

    Article  Google Scholar 

  7. 7

    Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).

    CAS  Article  Google Scholar 

  8. 8

    Liu, R. et al. Broadband ground-plane cloak. Science 323, 366–369 (2009).

    CAS  Article  Google Scholar 

  9. 9

    Fridman, M., Farsi, A., Okawachi, Y. & Gaeta, A. L. Demonstration of temporal cloaking. Nature 481, 62–65 (2012).

    CAS  Article  Google Scholar 

  10. 10

    Grbic, A. & Eleftheriades, G. V. Overcoming the diffraction limit with a planar left-handed transmission-line lens. Phys. Rev. Lett. 92, 117403 (2004).

    Article  Google Scholar 

  11. 11

    Fang, N., Lee, H., Sun, C. & Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).

    CAS  Article  Google Scholar 

  12. 12

    Rogers, E. T. F. et al. A super-oscillatory lens optical microscope for subwavelength imaging. Nature Mater. 11, 432–435 (2012).

    CAS  Article  Google Scholar 

  13. 13

    Mei, J. et al. Dark acoustic metamaterials as super absorbers for low-frequency sound. Nature Commun. 3, 756 (2012).

    Article  Google Scholar 

  14. 14

    Roh, Y. H., Ruiz, R. C. H., Peng, S. M., Lee, J. B. & Luo, D. Engineering DNA-based functional materials. Chem. Soc. Rev. 40, 5730–5744 (2011).

    CAS  Article  Google Scholar 

  15. 15

    Tan, S. J., Campolongo, M. J., Luo, D. & Cheng, W. L. Building plasmonic nanostructures with DNA. Nature Nanotech. 6, 268–276 (2011).

    CAS  Article  Google Scholar 

  16. 16

    Li, Y. G. et al. Controlled assembly of dendrimer-like DNA. Nature Mater. 3, 38–42 (2004).

    CAS  Article  Google Scholar 

  17. 17

    Li, Y. G., Cu, Y. T. H. & Luo, D. Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes. Nature Biotechnol. 23, 885–889 (2005).

    CAS  Article  Google Scholar 

  18. 18

    Um, S. H. et al. Enzyme-catalysed assembly of DNA hydrogel. Nature Mater. 5, 797–801 (2006).

    CAS  Article  Google Scholar 

  19. 19

    Lee, J. B. et al. Multifunctional nanoarchitectures from DNA-based ABC monomers. Nature Nanotech. 4, 430–436 (2009).

    CAS  Article  Google Scholar 

  20. 20

    Park, N., Um, S. H., Funabashi, H., Xu, J. F. & Luo, D. A cell-free protein-producing gel. Nature Mater. 8, 432–437 (2009).

    CAS  Article  Google Scholar 

  21. 21

    Feng, X. L. et al. Fluorescence logic-signal-based multiplex detection of nucleases with the assembly of a cationic conjugated polymer and branched DNA. Angew. Chem. Int. Ed. 48, 5316–5321 (2009).

    CAS  Article  Google Scholar 

  22. 22

    Sil, D., Lee, J. B., Luo, D., Holowka, D. & Baird, B. Trivalent ligands with rigid DNA spacers reveal structural requirements for IgE receptor signaling in RBL mast cells. ACS Chem. Biol. 2, 674–684 (2007).

    CAS  Article  Google Scholar 

  23. 23

    Cheng, E. J. et al. A pH-triggered, fast-responding DNA hydrogel. Angew. Chem. Int. Ed. 48, 7660–7663 (2009).

    CAS  Article  Google Scholar 

  24. 24

    Rattanakiat, S., Nishikawa, M., Funabashi, H., Luo, D. & Takakura, Y. The assembly of a short linear natural cytosine–phosphate–guanine DNA into dendritic structures and its effect on immunostimulatory activity. Biomaterials 30, 5701–5706 (2009).

    CAS  Article  Google Scholar 

  25. 25

    Dean, F. B., Nelson, J. R., Giesler, T. L. & Lasken, R. S. Rapid amplification of plasmid and phage DNA using phi29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res. 11, 1095–1099 (2001).

    CAS  Article  Google Scholar 

  26. 26

    Lee, J. B., Shai, A. S., Campolongo, M. J., Park, N. & Luo, D. Three-dimensional structure and thermal stability studies of DNA nanostructures by energy transfer spectroscopy. ChemPhysChem 11, 2081–2084 (2010).

    CAS  Article  Google Scholar 

  27. 27

    Roh, Y. H. et al. Photocrosslinked DNA nanospheres for drug delivery. Macromol. Rapid Commun. 31, 1207–1211 (2010).

    CAS  Article  Google Scholar 

  28. 28

    Cauich-Rodriguez, J. V., Deb, S. & Smith, R. Effect of cross-linking agents on the dynamic mechanical properties of hydrogel blends of poly(acrylic acid)–poly(vinyl alcohol vinyl acetate). Biomaterials 17, 2259–2264 (1996).

    CAS  Article  Google Scholar 

  29. 29

    Xing, Y. Z. et al. Self-assembled DNA hydrogels with designable thermal and enzymatic responsiveness. Adv. Mater. 23, 1117–1121 (2011).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank L. Archer and R. Mallavajula for helping with the mechanical test and C. Hui for insightful discussions. The authors also thank J. March, J. Hunter and T. Walter for proofreading this manuscript and Z. Li for discussions and suggestions. L.C. acknowledges support from the CAS/SAFEA International Partnership Program for Creative Research Teams. The present work was partially supported by grants from the United States Department of Agriculture (USDA) and the Department of Defense (DOD).

Author information

Affiliations

Authors

Contributions

J.B.L., S.P. and D.L. designed the experiments. J.B.L., S.P., Y.H.R., H.F., N.P. and E.R. carried out the experiments. J.B.L., S.P., Y.H.R., H.F., D.Y., L.C., R.L., M.W. and D.L. contributed to the data analysis. J.B.L., S.P., Y.H.R., D.Y., R.L. and D.L. wrote the manuscript.

Corresponding author

Correspondence to Dan Luo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2374 kb)

Supplementary movie S1

Supplementary movie S1 (WMV 2294 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, J., Peng, S., Yang, D. et al. A mechanical metamaterial made from a DNA hydrogel. Nature Nanotech 7, 816–820 (2012). https://doi.org/10.1038/nnano.2012.211

Download citation

Further reading